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Systems of instability in maneuvering aircraft, which do in
fact appear with increase in speed and height of flight, have served
in recent years as the basis for carrying out theoretical and ex-
perimental studies both in the Soviet Union and abroad. As a result,
cross couplings between parameters have been established, charac-
terizing the longitudinal and lateral motion of an aircraft.

On the basis of a number of their own investigations and a
collection of papers published by other writers, the authors of this
monograph discuss original concepts here of the theory of spatial
motion of an aircraft by taking into account these cross couplings.

Criteria are given here for stabilizing the motion of an air-
craft during maneuvers involving intense rolling. To describe the
characteristics of aircraft dynamics during spatial maneuvers, the
authors employ several concepts and methods involving the qualitative
theory of differential equations. The qualitative results obtained
in the analysis are illustrated by the results of calculating the
aircraft dynamics on digital computers and simulators.

Considerable attention is paid in this book to a physical
explanation of the results obtained and to a description of the
mechanics of aircraft motion in the most common cases of controlled
flight. Detailed analysis is given of the reasons and conditions
for appearance of the phenomenon of "inertial rotation'" of an air-
craft involving losses in effective lateral control.

This book is intended for industrial engineers, instructors,

and students in aviation institutes of technology. Included herein
are 8 tables, 141 illustrations, and a bibliography of 76 names.
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FOREWORD

The design features of modern aircraft have caused the appear- /3
ance of a new type of motion instability during aircraft maneuvers
involving intense rolling. Simply analyzing the stability of
straight and steady flight for modern maneuvering aircraft, using
linear equations of motion, is not sufficient to select their basic
parameters.

A method for analyzing the stability of aircraft motion, in-
volving rotation relative to the longitudinal axis (rolling), was
developed by the authors in 1957-1964, independent of the work done
by Phillips in 1948, who was unknown to the authors, although
numerous citations are found in the foreign literature.

This monograph is devoted to analyzing the above class of air-
craft spatial motions.

The stability and controllability of spatial motions of an air-
craft at a constant flying speed are studied in this book, i.e.,
the so-called "rapid" motions, associated mainly with angular rolling
velocity. In general form, the problem is rather complicated, since
nonlinear equations of motion are analyzed and an attempt is made
here to simplify them as much as possible. In a number of cases,
methods are employed for analyzing steady motion. For the more
complex problems, for example the evaluation of transient conditions
during control, the results are cited from solutions obtained on
computers.

Here also the motion of an aircraft is studied as a function
of aileron, elevator and rudder deflection and physical explanations
are given for the results obtained. Several concepts and methods /4
employing the qualitative theory of differential equations are
widely used in the analysis to describe the properties of the spatial
motion of an aircraft and to achieve the most common results.

Considerable attention is given here to studying the possibility
of stability and controllability loss by an aircraft during intense
rolling (inertial rotation system). Conditions are cited under
which it is possible for an aircraft to enter into such systems and
physical explanations are given for such phenomena.

The authors wish to express their appreciation to the reviewer

vii



of this book, Prof. V.N, Matveyev, who contributed a number of use-
ful comments in looking over the manuscript, and to Engineer M.M.
Medvedyev who assisted in the computer calculations and in the
simulation.

Since this monograph is a first attempt at illuminating the
rather complex phenomenon of the dynamics of modern supersonic air-
craft, the authors would be most appreciative of any comments the
readers would like to make. The address is: Moscow, K-51, Petrovk
24, '"Mashinostroyeniye" Press.
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INTRODUCTION

The basic method used in the "classical" theory of aircraft /5
motion relative to the center of mass is that of linearizing the
equations of motion. In the majority of cases this method permits
a system of equations to be simplified by dividing it into two inde-
pendent systems of egquations of longitudinal and lateral motion.

A large number of books have been devoted to describing the results
obtained through such simplifications (see e.g., [18]1-[36]), in

which the simplest forms of aircraft motion are analyzed when the
deviations of all parameters from the nominal values are small. It

is natural that the fundamental questions underlying the analysis

here are those involving the stability of motion "in a small region"
and, in certain instances, the study of transient conditions acted

on by weak disturbances and small deflections of the control surfaces.

In nonlinear formulation, only the plane motion of an aircraft
in a longitudinal plane has been studied (see, e.g., [33]). TFor a
long time the dynamic characteristics of aircraft could have been
evaluated satisfactorily by analyzing such simplified models of
motion. However, the increase in speed and height of flight, which
has been the reason for substantial changes in the geometric and
inertial characteristics, has caused the characteristics of aircraft
stability and controllability, to. be linearly dependent on the
parameters of its motion, especially during maneuvers involving
rolling. In particular, systems of instability have been discovered,
theoretically and experimentally, which could not be defined by
simplified analysis when all parameters of motion were assumed
small. Such dynamic characteristics of maneuvering aircraft are
associated with the existence of cross couplings between parameters,
which are characteristic of longitudinal and lateral motion, thus
making it impossible to separate the equations and requiring math-
ematical expression in the analysis of nonlinear differential equa-
tions. V.S. Pyshnov [25] apparently was the first to give any
attention to cross couplings between longitudinal and lateral motion.
However, he studied only the slight interactions caused by the aero-
dynamic cross couplings, which exert an insignificant influence on
the motion of an aircraft relative to the center of mass.

Theoretically the new effects were discovered with respect to /6
the influence of so-called inertial cross coupling on the motion of
an aircraft, especially during maneuvers at high rolling velocities.
According to the foreign data, the first theoretical work in this
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direction was apparently that of Phillips.¥

oo oo
S

After several aviation catastrophes involving American crashes
the causes of which were sought in the manifestation of inertial
cross couplings, interest grew in this problem, thus resulting in
a large amount of pertinent research (see [37]-[59]), concerned
mainly with stability conditions in the steady rotation of an air-
craft at high angular rolling velocities, and also analysis of
certain dynamic characteristics found by calculations performed on
simulators.

Quite detailed results are given in the work by Pinsker [50]
on determining values of the maximal deflections by angles of attack
and side slipping, obtained in studying the angle of tupn at a
given angle of bank. All these results have been published in the
form of individual journal articles and individual issues of supple-
ments, therefore they are inconvenient to use and require systemizing

and unifying.

In spite of the comparatively long developmental history of the
theory of aircraft motion relative to the center of mass there is
still no sufficiently complete presentation of the dynamic char-
acteristics of an aircraft during maneuvers with large variations
in the parameters of motion. Research, which has been conducted in
studying inertial cross couplings, has created a base on which it
is possible to construct a general theory of aircraft motion rela-
tive to the center of mass. To some degree such an attempt is being
made in this book.

First let us say that the problem of investigating the dynamics
of an aircraft in the most general formulation, when we look simul-
taneously at the motlon of an aircraft both relative to the center
of mass and the motion of its center of mass, is quite complex and
is not analyzed in this paper. In our book we have made an attempt
to solve the more modest problem of investigating the qualitative
characteristics of aircraft motion relative to the center of mass
on the assumption that, for the time of such motion, the motion
characteristics of its center of mass do not vary, i.e., its speed
and height of flight are assumed to be constant. In addition to
simplifying the computations, all fundamental investigations are
conducted on the assumption that the aerodynamic coefficients of an
aircraft are linear functions of their own arguments. It should be
noted that these two assumptions, generally speaking, are not

*W.H. Phillips, "Effect of Steady Rolling on Longitudinal and
Directional Stability", NACA TN, June, 1948.

%#%*The foreign press noted that, as a result of the unfavorable ef-
fect of inertial cross couplings, several North American Super Sabre
F-100 and an experimental plane {(the Bell X-2) were destroyed in

the air.



excessively restrictive, since the basic purpose of the work con- /7
sists in determining the qualitative characteristics of spatial
controlled motion of an aircraft under ordinary (rather than spin)
flying conditions. With such limitations, the variability in flying
conditions and the nonlinearity of the aerodynamic coefficients

lead mainly to a slight guantitative change, however, the qualitative
characteristics of the motion are retained. All the results obtained
in the research, as well as the methods, can be extrapolated to the
case of nonlinear aerodynamics.

Since the major attention in this research is devoted to the
discovery of qualitative characteristics of motion, all the numeri-
cal results are merely illustrative.

At the present time, due to the widespread use of simulators
and especially digital computers, the problems involved in finding
precise soclutions have been substantially simplified. In this case
the significance of the methods, which permit a qualitative picture
to be found of the motion (even though admittedly approximate),
increases since such methods substantially simplify the solution to
problems by allowing the qualitative character of the results to be
predicted and by reducing the amount of machine time necessary for
analyzing the motion of an aircraft. In this respect we may note
that, at the present time, there is apparently no value in carrying
out detailed approximate parametric computations for any specific
cases of motion, since the system of equations of aircraft motion
is a multiparametric one and requires a large amount of computation
to develop standard cases. The methods of mathematical modeling
yield much greater potentiality in this respect.

The problems involved in studying the motion of symmetric
rotating missiles are very similar. The problems involved in in-
vestigating the stability of motion of rotating axisymmetric artil-
lery shells and jet-propelled finned missiles in linearized formu-
lation, have been studied by any number of authors (see [60]-[62]),
however the major new phenomena in the dynamics of missiles have
been found rather recently (see [63]1-[76]). These phenomena are
related to the so-called '"resonance" of lateral oscillations of a
missile with an angular rolling velocity and arise when unbalanced
moments, either aerodynamic or from thrust misalignment, are present.
It is interesting to note that such resonance phenomena, in several
cases leading to a real loss in stability of the missile, may ap-
pear when the rotating finned missiles are in motion and are not
observed in the dynamics of artillery shells. This effect is due
to the phenomenon of resonance being possible only for statically
stable missiles and impossible for statically unstable missiles,
in particular, for artillery shells, which are usually aerodynamical-
ly unstable.

This book consists of seven chapters. /8

The first chapter is devoted to equations of spatial motion of
an aircraft; they are simplified relative to the above-formulated

xi



problems and are reduced to dimensionless form.

The second chapter involves a study of the stability of motion
of an aircraft during steady rotation relative to the longitudinal

axis. In this chapter we cite criteria of stability and analyze the
boundaries of the stability regions as a function of the different
parameters. Such a study of motion is essential in analyzing the

more general cases of aircraft motion involving aileron control.

The third and subsequent chapters are an analysis of the spatial
motion of an aircraft using the methods of the qualitative theory
of differential equations. The types of singular points are deter-
mined with various control surface deflection ratios; criteria are
given for a periodic stability of motion in the vicinity of the
singular points and the character of such motion is analyzed.

The last chapter cites several results of studying the dynamics
of symmetric rotating missiles.

xii
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CHAPTER 1
EQUATIONS OF SPATIAL MOTION OF AN AIRCRAFT

1. General Comments. Equations of Motion for Solids.

In this book, as we noted in the Introduction, we look at sev- /9%
eral classes of spatial motion of an aircraft and analyze its
stability and controllability. We have not studied the motion of
an aircraft along its flight path. At the present time there have
been any number of monographs and special educational books con-
cerned with the problems of analyzing the flight paths of an air-
craft (see [33], [34], [35]1, etc.). In studying the flight paths
we have devoted our greatest attention to solving differential
equations of motion, which follow from the theory of momentum, i.e.,
to solving the force equations, and have analyzed the equations of
moments, as a rule, only from the viewpoint of an approximate evalu-
ation of the required efficiency of controls or have not studied
them at all.

In correspondence with the basic problem formulated above, we
arrive at solutions to the equations of motion of an aircraft in a
form which is the most convenient for analyzing problems of stability
and controllability.

We shall assume that an aircraft is an absolutely rigid body
with a constant mass. Thus, we can assume that the liquid propel-
lant, which occupies considerable space in certain modern aircraft,
will be fixed in a position that corresponds to the original straight
and steady flight path. In special cases, when necessary, the in-
fluence of the motion of the liquid in the tanks on the stability
and dynamics of controlled motion must be analyzed specially.

We shall assume that the influence of structural elasticity
is expressed only in the values of the respective aerodynamic char-
acteristics. This influence can be taken into account quasistatical-
ly according to the mean values of the dynamic heads. Thus, we do
not take into account the increase in the number of degrees of free-
dom caused by structural elasticity. When necessary this can be

#*Numbers in the margin indicate pagination in the foreign text.



allowed for by methods which are specific for each given problem /10
(problems of studying the operation of automatic equipment, studying
flutter, etc.).

To solve the equations of motion
% we must define the coordinate system
in which the study will be conducted.

Let us look at the following coor-
dinate systems:

(a) As the reference coordinate
system, which is fixed relative to in-
ertial space, let us take the so-called

geodesic coordinate system 09x0y0z%
g9 949

where the axis is oriented vertically

with the positive direction upward.

Z The axis Ong can be directed horizon-
tally and its orientation can be chosen
Fig. 1.1 arbitrarily; however it is usually
feasible to use the direction of flight
of the aircraft. The origin of this system can be set at a certain
given point on the earth's surface Og (Fig. 1.1). 1In this coordinate

system it is convenient to measure tﬁe'linear motion of an aircraft
relative to the Earth (i.e., the flight path of its center of mass);

(b) Let us select a central geodesic coordinate system 0,X
Yng such that its axes are parallel to the axes of the fixed refer-
ence geodesic system; the origin corresponds to the center of mass
of the aircraft (see Fig. 1.1) and moves in a forward direction

with 1it.

(c) Let us select the so-called system of fixed coordinate
axes, localized with the aircraft, and place its origin in the center
of mass of the aircraft. This coordinate system not only moves with
the aircraft but turns with it as well. We shall return to the
problem of crienting the axes of this sliding coordinate system

somewhat later.

The equations of motion of an aircraft, as a solid, can be ob-
tained from the laws of conservation of momentum and moment of

momentum. We can thus divide the equations into two groups, one of
which describes the motion of the center of mass of an aircraft and
the other - the motion about the center of mass. In vector form

these equations can be written as follows:
=R+G (1.1a)

and the equations of motion of an aircraft about the center of /11



mass can be written as:

ax
dt

=M. (1.1b)

In these equations we have used the following definitions:

V is the velocity vector of an aircraft about an inertial

space (axes 00x0y0z0).
g 9 gg

is the vector of external forces acting on the aircraft;
is the gravity vector;

is the moment vector of momentum of an aircraft;

is the moment vector of external forces about the cen-
ter of mass of an aircraft.

SRS e

It is most convenient to conduct our analysis of the motion of
an alircraft relative to the center of mass in a sliding coordinate
system. Here the parameters of the motion of a solid, especially
the forward and angular speeds of motion, must be determined in a
sliding coordinate system. Thus, in carrying out the differentia-
tion in equations (1.la) and (1.1b) we must use the formula for the
total derivative of the vector, given by vector analysis, that is
defined through the derivative relative to the sliding coordinate
system and the vector of the angular rotational velocity of the
sliding axes €, in the form

f‘g]=d—z+§xﬁ (1.2)

where [ ] is the symbol which denotes the total derivative;

4 is the vector, that is defined in the sliding coordinate
system by projections ay, ay, az on the sliding axes 0XYZ

__and by the unit vectors %, J, k;

Q2 is the vector of the angular velocity of rotation of the
sliding system of coordinate axes relative to the fixed sys-
tem with projections w wy, w, on the sliding axes.

By using the vector produce Q x A, we take into account that
component of change in the sliding coordinate system of the vector
derivative A, which 1s caused by rotation of the sliding axes.
Formula (1.2) can otherwise be written in expanded form:

x’

dA] dA Lok
=== 4|0, o, . (1.3)



If we bear in mind the formula for differentiation (1.3), from /12
the first vector equation (1l.la) we find the system of equations for
the motion of the center of mass of an aircraft in projections on
the sliding axes:

dav
m (£ oV a— 0| =R+ s )
av
m( dty _{_sz.\,—mez):Ry—[—Gy; } (1.1)
Wi | o Vy—oV G ‘
(o)t |
We call this group of equations the equations of force. We

use the following definitions in them:

0XYZ is the system of sliding coordinate axes, in which the
motion of the aircraft is studied;
Rx, Ry, Rz are the projections of the external forces, acting

on the aircraft;
Gx,Gy, Gz are the projections of gravity on the axes 0XYZ.

The motion of a solid (an aircraft) relative to the center of
mass is described by the second vector equation (1.1b).

From theoretical mechanics we know (see [9]1, [10]) that pro-
jections of the vector of the kinetic moment X on the sliding axes
can be written in the general case in the following form:

Kx:‘]xwx- jx!/w!/ - sz‘”zv

Ky= —J o+ Jyo,— Jy0,, (1.5)
K,= ——sz(l)x_-/yzu)y—{_‘/zwz' .

The first simplification of equations (1.5) is due to the
existence of a pitching plane in practically all types of aircraft.
If we select the axes 0XY such that they 1lle in the pitching plane
of the aircraft, we find that Jgpz; = Jyz = 0. From expression (1.1b),
if we use equations (1.5) and carry out the differentiation by
taking (1.3) into account, we find the second system of equations
for the motion of a solid, having a pitching plane:

w W \
j 2 * _jxl/ %—{-(‘,z_\]y) mymz—i"nyU)'r(lJz:Mx;

* dt

w d(l)x —_ .
Jy%—‘lxll "&T“"'(Jx—jz)‘”z“)x—'“/xywy‘”z—My» (1.6)

122 Ty (03— H U= L) 00 = M.
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We call this group of equations the equations of moments.
2. Equations of Motion for an Aircraft in Dimensional Form

In using the equations of motion, given above for a solid, to /13
describe the motion of an aircraft they must be supplemented by
specific expressions for the external forces and moments acting on
the aircraft as well as by expressions for the forces of gravity.
To obtain these supplementary data, we must in turn introduce a
definiteness into the orientation of the sliding system of coordinate
axes relative to the aircraft.

In studying the dynamics and aero-
dynamics of aircraft there are mainly
two coordinate systems which are ordi-
narily used: the so-called body-system
of coordinates and the semifixed sys-
tem. The semifixed coordinate system
0XY7Z, where the axis 0X is directed
along the velocity vector when B = 0,
has been used most widely in developing
and analyzing aerodynamic coefficients
for experiments in wind tunnels. Such
choice 1s due in large measure to the

Fig. 1.2. peculiarities of measuring forces and

moments using aerodynamic balance, set

up in a given manner relative to the current of air in the wind
tunnel. In studying the dynamics of an aircraft in semifixed axes
we can use the aerodynamic coefficients obtained in such tests in
wind tunnels with no conversion. The arrangement of semifixed axes
and the main characteristic direction, selected on the aircraft in
the form of a mean aerodynamic chord or of a certain axis on the
fuselage, is illustrated in Figure 1.2.

However the system of semifixed coordinate axes has the same
disadvantage that the inertial moments of the aircraft, computed
relative to such axes, depend on the angle of attack and consequent-
ly are variable values, thus complicating the system of equations
of motion. These disadvantages are lacking in the body-system of
coordinates, fixed relative to the aircraft in which the inertial
moments are independent of the angle of attack.

The location of the axes 0X1Y;Z2; relative to the aircraft is

seen on Figure 1.2. In a body-system of coordinates the equations
of motion appear most simply, if the major inertial axes of the air-
craft are taken for the axes 0X1Y1Z;. For the majority of dynamic /14

problems the body-system of coordinate axes is physically the most
justified since the measuring instruments, the control gauges and
even the pilot himself are in a body-system of coordinates and re-
act to its motion. We make our studies in this book, on the basis
of the above discussions, in a body-system of central coordinate
axes, whereby we take the major axes of inertia. However in this



case it is essential that the aerodynamic forces and moments obtained
in the wind tunnels be converted to other axes.

The aerodynamic forces and moments
which are on the right-hand side of
the equations of motion depend on
height and speed of flight, angles of
attack and side slip, angular velocities
of rotation of the aircraft and are
independent of its orientation relative
to the Earth. Only the projections of
gravity (Ggp, G,, Gz) on the axes of
the sliding coordinate system depend
on the orientation of the craft rela-
tive to the Earth. To locate these
projections it is essential to intro-
duce angles which define the orienta-
tion of the aircraft relative to the
Earth. The orientation of the fixed
axes relative to the geodesic coordi-
nate axes OX Y Z,4 are usually deter-
Fig. 1.3. mined by u51ng tﬁe Euler angles 7,0,
Y, whose meaning is obvious from the
method of sequential turns of the fixed axes relative to the axes

OXngZg used to find them.

The course angle v (angle of yaw) is defined as the angle
between a given reference direction (axis OXg) and the projections
of the body axis 0X; on the horizontal plane.

The angle between the body axis 0X; and the horizontal plane
is termed the angle of pitch and is denoted by

As the angle of bank we understand the angle between the vert-
ical plane, passing through the axis 0X;, and the body axis 0Y; of
the aircraft.

Figure 1.3 shows a system of axes 0XgYyZgs that is fixed rela-
tive to the Earth and a system of axes 0X1Y1Z; that is fixed with
the aircraft. We shall assume that the systems of coordinate
axes are superimposed at the origin. We show how by sequential
turns of the body axes we can obtain the Euler angles introduced
above (see Fig. 1.3). The first turn of the system of body axes /15
can be made relative to the axis 0Y, for the heading ¢ (w corresponds
with the axis 0Y,); the second can ge made relative to the axis 0Z'
at an angle 9( ﬁcorresponds with the axis 0Z') and finally the third
turn can be made relative to the axis 0X; at an angle Yy (Y corre-
sponds with the axis 0X;). By projecting the vectors w , Y, which
appear as the components of the vector of angular V61001ty of the
motion of the aircraft relative to the fixed coordinate system for
the body axes of the craft, we find the coupling equations between
the Euler angles and the angular velocities of the body axes:

M U RNy — 1 e I m wml




o)x=y'+ {:'Sin o
w,=1%cos & cosy--¥sinvy; (1.7)

wz=5} cosy—';'»cos §-.sin v.

By solving these equations relative to the derivatives Y, &
and g, we find the kinematic relationships which couple the deriva-

tives of the Euler angles and the projections of the vector of angu-
lar velocity of the aircraft on the body axes

=0, sinyJ-w,cosy;

1
1 |

== »,, CO — i .
$ Py (w, cOs y— 0, sin v); '} (1.8)

y= o, —tg¥(v,cosy— o, siny).
Using the Euler angles, and the expressions given in Table 1

for the direction cosines, it 1s easy to find expressions for the
projections of gravity on the body axes

G,= —Gsind,
G,= —Gcosdcosy; (1.9)
G,=Gcos¥siny.
‘ TABLE 1
\\Qfodesic
Body™~Axis O0Xg OY¢ 0Zg
Ax1s
\QXI —cosycosd sin d —sin g cosd
oY, —cos{sindcosy+ | cosdcosy cos ¢ siny +
-+ sin ¢.sin y + sin Y sindcosy
0Z, cos ¢sindsiny+ —cos §siny cosd cosy—
-+ sin ¢ cos y — sin ¢ sin $siny

It then follows to note that equations (1.8) have singularity
at the angle of pitech ¢ + w/2, since in such case the values o cos
9> 0. 1In those cases when it i1s necessary to study the motion at



9> m/2, we must take this singularity into account and determine
the Euler angles in another manner, or simply consider the equations
without singularities. Such equations, in particular, are found

in the work by Shilov [17].

In order that the equations of motion (1.4), (1.6) be inte-
grated, we must add to them the equation of change in altitude and
air density in the process of aircraft motion:

zditi: V,sind4-V, cosdcosy—V,cos ¥sin vy
(1.10)
Q:QOe—)‘H’
where )X is a constant equal to = 0 [%,

pop is the density of air at H = O.

We must also take into account the relationship between the
projections of flying speed on the body axes, the angle of attack
o and the angle of side slip B (see Fig. 1.2):

V=V cosacos§f;
V,= —Vsinacosf; (1.11)
V,=Vsin,

where ¥V is the total flying speed.

Relationships (1.11) can be assumed as a definition for the
angles of attack and side slip, from which it follows that by the
angle of attack o we mean the angle between the projections of the
velocity vector V of the aircraft on its pitching plane and its axis
0Xy, (o > 0, when the axis 0X; is located above the projections of
the velocity vector, see Fig. 1.2). The angle of side slip B8 is
defined as the angle between the velocity vector and the pitching
plane 0X1Y, of the aircraft (B8 > 0 if the aircraft flies with the
right wing "forward").

Below we shall analyze only the controlled motion of an air-
craft, therefore we assume that there are no disturbances in the
atmosphere. Consequently, the flying speed and the up-stream veloc-
ity are reciprocally equal and differ in direction by an angle of AN

180°.
Let us introduce the aerodynamic forces and moments through
their dimensionless coefficients® and once more rewrite the force

*In future sections, the index "1" in the dimensionless coefficients
will be omitted for brevity.
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and moment equations:

av . Ve .
m(_d?‘l—f-u)yvz— szy)= __CXIQTS—GSIH'&_{“pengCOSCb\

m(%ftl"*"”zvx —waz)_—_ch—giS—Gcos%cos v+ }
FP sing (1.12)

" ( ddv;, +oV,— ”""V‘)= “'QTQS_I—G cos¥siny,

where Pops is the engine thrust, comprising the angle ¢ with the
axis 0X; %we now assume ¢ = 0).

The moment equations are:

Qv?2
~ —!—(./z——]y) "’y“’z:mnT S,

do
J, =

2 (1.13)

doz \%
Jz P -f—(./y—Jx)u)x(o)y:mleT SbA'

dw Ve
JL/ d—ty—[—(‘]x-—Jz)mzmxzml/lQTSly l
)

As we know, the coefficients of aerodynamic forces and moments
in the general case are expressed in the form of functional depend-
ences of the kinematic pavrameters of motion and the parameters which
define the flight path

Ceyz OF My, ,=F(a, § 6é6e‘6f w,., o, o, M, Re). (1.14)

In relationships (1.14) we use the definitions: M = Mach
number; Re = Vgoby/y = -the Reynolds number.

This last group of parameters (M,Re) characterizes the initial
flight path, therefore in analyzing the stability or controllable
motions, these parameters may be taken as constant values. In
analyzing the stability of motion with fixed controls it follows
also to take as constants the angles of deflection of the control
surfaces 85, 8o, On. The effect of the angular velocities on the
force coefficients, though some does exist, is not large and has
been insufficiently studied. Thus, we can write the following basic
functions, which are advisable to take into account in studying
the motion of an aircraft relative to the center of mass:
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ca=ri(e B M5,
(‘I/I—fZ (a Kja My wzaé'

Qﬁ=f3@,M,Qnmm
s )’ (1.15)
n) s
7

Gr);

e?

my=f,a, 5 M, 0,, o, 8
myl =f5 (a’ ﬁ: My Oy, @
mzl=f6 ((1, p» A/‘, Wy, 5 )

Consequently, in the general case of motion, on the right-
hand side of each of the equations of forces and moments a rather
complex function is contained which as a rule can be determined on
the basis of approximations of experimental data. The total system
of equatiocns of spatial motion of an aircraft obtained is quite
complex and in general form can be solved only on computers. How-
ever to obtain answers to the whole series of questions it is neces-
sary only to solve the simplified equations. Examples of such
simplifications are the division of aircraft motion into longitudinal
and lateral motion and the further subdivision of the longitudinal
motion into short-range and long-range. Such an approach to analyz-
ing the dynamics of an aircraft is possible when the deviations
from the original flight path are small and the equations can be
linearized.

3. Linearization of the Equations of Motion for an Aircraft.
Conditions for Dividing the Total System of
Equations into Independent Systems.

In analyzing any engineering problem, properly chosen assump-
tions which take into account the most essential factors, permit
obtaining a system of differential equations of motion that is more
simple than the original one.

Let us linearize the equations of motion of an aircraft
given above. Then let there exist a certain solution to the system
of equations obtained above. We shall assume that this solution
will correspond to a certain steady flight path

Vi ag; 'YO':_(DxO:—‘(nyO:U)zO:O.

The motion or the state of equilibrium, corresponding to /19
this solution will be termed undisturbed motion. According to the -
usually accepted method of linearization we shall assume that the
disturbed motion is determined by small increases in the basic
parameters toward their undisturbed values, i1.e., V = Vg + AV, o =
oag + Aa,..., etc. The reason for the disturbed motion of an air-
craft may be small changes in the initial conditions, small deflec-
tions in the controls or any other small disturbances.

10



Let us expand the functions in the right-hand sides of the
equations of systems (1.12) and (1.13) into a series for the basic
kinematic parameters of the motion and retain only those terms
which contain first-order derivatives.

The condition of smallness of the deviations permits assuming
that the sines of the increase for all angles are equal to the angle
itself and the cosines are equal to unity. As a result of the
smallness of the analyzed reference angles of attack and side slip
this assumption may be approximately expanded to their original
values. From the above, in particular, it follows that

V, =V, Vy=—Va V,=VEB (1.16)

In linearizing the forces and moments acting on the aircraft,
we must take into account that the linearization is made at the
point of equilibrium, which in this case corresponds to the straight
and steady flight with no side slip. From the existence of a
pitching plane of the aircraft X10Y;, it follows that all derivatives
of the longitudinal moment and forces acting in this plane, according
to the kinematic parameters which determine the nonsymmetric part
of the motion (B, wy, wy), will be equal to zero.

Analogously, all the derivatives of the "asymmetric" forces
and moments according to the parameters which characterize the
motion in the pitching plane of the aircraft, will also be identical-
ly equal to zero in the range below the critical angles of attack,
i.e., until the flow occurs without separation.

If we drop the terms above the first order of smallness and
bear in mind the equation of equilibrium of forces and moments for
the straight and steady flight, we find the familiar equations of
motion of an aircraft in the variations:

m ";x = G cos 8,9 — Xea— XVV;

dVy — . o, vi/.
m(G Ve =0 e YV (1.17a)

J, d:f = Mo+ MLV L M7, + M2

s’

ar ©z
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m( % —Vowy) G cos Syy+ Z5¢:

oy
at

Jx

do
Jl/ d: Mx(l)x—*—M ywy+M[/|»

o ody -
‘Z =, ta n&o -y

In these equations for brevity we omit the sign of the incre-
ment A, and the parameters of the original undisturbed motion are

denoted by the index "zero"

As we can see, the system of equations given here can be
divided into two systems which are independent of one another (1.17a
and (1.17b). One of them, system (1.17a), describes the change in
parameters of the longitudinal motion of an aircraft Vy, V, wgs
the other system, (1.17b), describes the change in parameters of
the lateral motion wg, Wy s Y and 7V,

Consequently, the so-called longitudinal disturbed motion
in the vertical plane can be distinguished from the lateral dis-
turbed motion (rolling and yawing at a constant flying speed Vgy and
a constant angle of attack ag). FEach of these motions is described
by a system of linear differential equations of fourth order; to
find the solutions to these equations we must find the roots of the
algebraic equation of fourth order and determine the independent
constants for the initial conditions. The analytical methods for
a disturbed motion of an aircraft in this formulation have been
developed quite well and in detail (see, for example, the book by

V.N. Matveyev [311]).

In the same instance when it 1is necessary to look at the
controlled flight of an aircraft which may be accompanied by the
development of high angular velocities, we must retain in the equa-
tions of motion the nonlinear terms which contain the angular
velocities. Let us write the equations for small o and B.

We introduce first the supplemental relationship for the
angle of attack:

=0 +OL1, (1.18)
m

where o is the angle between the axis of the aircraft, correspond-
ing to zero 1lift, and the major inertial axis (ap > 0, when 0X; lies
above the axis of zero 1ift). In such definitions the angle of
attack a; 1s measured from the axis which corresponds to zero 1ift®

®The index "1" will now be omitted.
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If we substitute relationship (1.18) into equations of motion (1.17a)
we find

and (1.17b) and carry out the necessary transformations,

. 4 Ga 58 s
—“‘}“"z“'?"&“‘*‘;(dm-’-a =Vtary ese—-'l‘Tcos Y cos e

m.;—f-Amxu)y:/W: G+M:z-wz+Mi-d + Mge B Ge .

?

. -4
. 4 - ’-“
B—wy+7§—wx(am+d)=zﬂ'p+z "6+ —ﬁjcosf}siny;

J)V——Bmxwzzﬂ—/li-fj_{'_.m‘;ywy_{_ A—/l‘;x.mx_l_ MSI’ . 5P+[Tjga. 45

ot Cu),,O)z:ME-E+M$«V-wx+;r/l$”-my+ A_dga 8 a+ﬁg1” Sy

V=—(,—¢p)q %—gsin%,

In the system of equations (1.19) we use the time differen-
tiation as the point and the aerodynamic forces and moments appear
as the basic linear terms of the series expansion for the parameters
In this case we take the following

of motion of the aircraft.
definitions:

Se a
?u—fﬁs‘ _(Se_c qs _mquSZ'
Vm Vm ! Jz 5
M5e:T§EhZEE-}W5 mprgsi2 = mGyqsl
z s My v M b
J 2 .
z
3
ZBZC,}IS_ =5 £z5q8 ¢ Peng,g
’ Vln ’ Vm 1) S'q
M} mygsl 5 mUgsi2 oy
—t . o £ ;
oy T 27,V
gzmqu —= _mzquﬂ ete:
Iy x 2V
3 msrqsl —3 miatlsl
MpP=_Y My = etc;
v X
A Jy“]x : =Jz‘“1x’ C ]z—-]y.
Jz Iy 7.

(1.19)

(1.20)

(1.21)
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Expression (1.21) includes the derivatives of the aerodynamic

coefficients mgb, ng, etc., which are determined through use of the
following formulas:

. ba 3
Y i
m;b‘mz ik
L foba
S . =5
Mg (1.22)
— 9op?
© . A
. - Qb?,\

The necessity of such a conversion of the derivatives of the
longitudinal stability is due to the fact that the quantity 7 is
taken, rather than bA, in the equations of spatial motion as the
characteristic linear scale, as was done in computing the derivatives
of the stability for an isolated longitudinal motion and in analyzing
the results of wind-tunnel experiments.

4, Equations of Motion of an Aircraft in Dimensionless Form
To obtain a good generality of the results from the equation
of motion of an aircraft it is advisable to convert to dimension-
less form. To reduce the equations to dimensionless form let us
introduce the following variables™:

time scale Ty

relative aircraft density u; _

dimensionless angular velocities ws;
dimensionless inertial moments of the aircraft <

J E

7

(1.23)

Let us note that the parameters T,, H and the coefficient
1/2V, used in computing w5, coincide with the analogous parameters
used in reducing the equations of lateral motion to dimensionless

form (see, for example, [18]1, [19] and [341]).

#To reduce the total system of equations to dimensionless form,
let us use the value of the wing span 7 in the future as the char-

acteristic scale.
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In transforming the equations of longitudinal motion to
dimensionless form the values T, and W are usually computed by using
the mean aerodynamic chords (by) as the characteristic scale, which
must be borne in mind in analyzing the total system of equations
of motion cited below.

Using relationships (1.23), let us transform Equation (1.19) /23
into dimensionless form. Transformation of Equations (1.19) to T
dimensionless form can be carried out for the general case of air-
craft flight at a constant height (p = const) by taking into ac-
count the variable flying speed. Change in the flying speed is
described by Equation (1.20) in which the value (cx—cp) for simpli-
fication of analysis is assumed to be constant. Let us introduce
the dimensionless time 7T using the following differential equation:

dt=n1,dx, (1.24)

where the value 1, is a variable due to change in the value of the
flying speed V. In carrying out the transformation we must consider
the following rule of differentiation:

d d [— 2V WV de 2 a4V -
ar = (8 )= T (1.2%)

As a result of the simple transformations, and taking Equations
(1.24) and (1.25) into account, we find the equations of motion for
an aircraft in dimensionless form (the bar indicates differentiation
by dimensionless time T):

-3

&
280> c e €y —Cp
m cosﬂ-cosv—% Se—}—x—Q—a,;

-, . - —3 Cx—Cp \—
o, - nw«,xmyzmzb-a{- mzf) —2—— (v)z—l—

.. Y e
Ty Mgl
¢f  lex—ep)

3 — s, —po(a rar}:[7+—2—] 3+ (1.28)

ng‘lfgn
®

{

8
T, 8. siny:
5 - cos ¥.siny;

+.
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’ an ! w X P
©, — BP‘“’x“’z = ml/‘j -+ (m”y + __5_) wy +

—w —_ , —b -3
+onyt oy _i-'”lI/rBr\-*- "lya' 8 (1.26)

— - —_— -— Cy —C
L 90 () x 14
o4 C}"”’y("z e m‘nxp + '(,nxx ..|_.___2_) o, ._:..

— o, - T8g 2 ot
+myoy+n 3 m e,

In the system of Equations (1.26) we use the following defini- /24
tions: —_—

— mS J
« 2D z .
Zb——hb ete ’ Zb—'m(l)f
2
B J
— m . 14
ﬁ:— ¥ * p—tl
¥ iy ete ’ ly / 9?
’"(—2) (1.27)
# . 7
— m x
e * v =
m' i etc L, m<l>2
2

For many problems in the dynamics of an aircraft, the effect
of gravitational forces on the disturbed motion of an aircraft
relative to the center of mass is small, In particular, this re-
fers to the case when short-range motion is analyzed. However,
the gravitational forces determine the longitudinal trim of an
aircraft and therefore must be taken into account in the original
undisturbed motion. In this latter case, the form of Equations
(1.26) is practically constant, only a (the angle of attack in
horizontal flight) must be added to a_, and we must take into account
that o and 8, are increases in the respective variables with re-
spect to their values in horizontal flight.

In view of the fact that in the future we shall analyze the
equations of motion in dimensionless form at a constant flying speed,
when cgx = ¢p, let us rewrite them again taking the comments made
above into account and omitting the gravitational terms:

16



a ¢ e
RPN it 3

a,_f"‘Toz_'l_P‘pax:_ 9 2 e

@+ Ao, =m a+;ifg{;z +

b : (1.28)
m _
+—=a'tma g6 s
— - cg cz
B"—P:“’y_!"“)x ((Im-[—a).—_——2— p-—!—_{ 8]?;
— - — —6 .
~+ﬂ%xm&4_m§r-5r+mya 8a,
o+ Cpoyo, =mb-p4 m" o, -
+E:” (;y—}—m—ix'ax_l_”_lia’ 6;3“‘— _U—I,'il”-ar;
Ve —(c,—c) =0
=TT, (1.29)

The convenience of the dimensionless form of the equations con-~ /25
sists especially in the fact that without solving Equations (1.26)

we can make several general conclusions. In particular, from the
equations it follows that the value ¥ is the only parameter in the
system of Equations (1.26) (if an,f,6 = const) which depends on the

flight path. The value p is determined by height and is independent
of flying speed. Hence it follows that the qualitative picture of
the aircraft motion acted on by disturbances, and with control,
depends only on height of flight and is independent of speed. The
effect of the height of flight on the qualitative picture of motion
is manifested only through the dependence of the aerodynamic coef-

ficients on the M number (or through change in oy, ¢,). The basic
effect of the flying speed is expressed in the change in time scale.
For example, when ap_ £, = const, the frequency of oscillations and

damping time depend on flying speed, but the stability of motion,
the value of the dimensionless decrement of damping, the number and
forms of the points of rest of the system of equations of motion,
etc., are independent thereof (this is all true with the single
stipulations that the aerodynamic coefficients are independent of
the flying speed).

17



Equations (1.26) are nonlinear equations with constant coef-
ficients even for the case of aircraft motion at a variable speed.
In this case the variability of speed is manifested in the change
in the coefficients of damping due to the existence of the coeffi-
cient (ex - ¢5) and in the change in time scale. With transition
to dimensionag time we must use the following dependence of ¢ on T:

y m . at
t=8'rmd*c——g?‘5 R (1.30)

0

To find the dependence between ¢ and T in explicit form, let
us transform Equation (1.29) into a new variable t:

W l—ep) (1.31)
dv 2 )
After integrating Equation (1.31) with (ey - ¢p) = const, we find: /26
Cx—'fp
—\—3° 1.32
V=Ve (.2 ) . ( )

And finally by substituting (1.32) into (1.30) and integrating we
find the formula for the dependence of ¢ on T:

e ) [e(cx-;"p)xb—l}. (1.33)

T sV (e _Cp)

It is easy to prove that when (ex - ¢p) > 0, Formula (1.33)
in the 1limit converts to the identity (¢ = tT<+1p40).

From the system of Equations (1.26) it is immediately clear
that the acceleration of the aircraft (flight when ¢, > ¢,) increases
the damping of the oscillations, i.e,, it affects the stabilizing
oscillations, and the drag (¢, < ¢,) (destabilizing oscillations),
i.e., with flight at a decreaging speed the effective damping also
decreases. All these conclusions are found for the equations of
motion that are practically precise, in particular the equations of
short-range longitudinal motion and the equations of lateral motion.
In these cases the solutions for the motion of an aircraft during
flight at variable speed can be written in explicit form.
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5. Approximate Classification of the Motions of an Aircraft,
About the Longitudinal, Lateral and Vertical Axes .

Before we begin a study of the features of spatial motion of
an aircraft, let us bear in mind several results which pertain to
the so-called isolated longitudinal and lateral motions.

Let us look, as an example of the initial undisturbed motion,

at the steady horizontal flight of an aircraft without rolling (V¢ =

const, Hg = const, ©g9 = 0) and study the disturbed motion only
over a short segment of time. In this case we can ignore the change
in flying speed (dV/dt = 0). As was shown above, with small disturb-
ances, the motion of an aircraft in its pitching plane (about the
axis 0%7) does not depend on its motion relative to the axes 0X;
and 0Y;, and the motion about the axes 0X; and 0Yy1 does not depend
on the motion about the axis 0Z;. This means that to study the
properties of motion of an aircraft during small disturbances we
can look separately at the isolated logitudinal and isolated lateral
motions, which are described respectively by the following two groups[&l

of equations:

—

I

—_ * e
G':p.o)z—— -C—”—a_ i’.al;
2 2 e (1.31)

o e w, ey =
mz--mzba—!—ngugz —f——;ﬂ a —l—m}g ‘B

——

¥ =po,;

B
b =pw, o, (o +a )t Zz
pr=pu,+po,lay Q}Lf)+ 2 B+

2

2[{0‘(
= siny;

L
2 I‘+ Iy

ey e, e = =% e RSO
W, =my B Y my-}—myx-wx—{—myl‘-ﬁr—{—mya-r:a, !
— _ = o = s — (1.35)
wx—mx'p_*_m’xx'wx—l_mx'aa_{_m'xn&l;,;

’

-
I

PO

The properties of the solutions to these two systems of equa-
tions have been analyzed in detail in many papers (see, for example,
183, (193, [34]), therefore we shall look at them only insofar
as they are needed for further discussion.
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A. Isolated Longitudinal Motion.

Equations (1.34) can be easily reduced to a single equation
of second order, which describes the change in the increase in the
angle of attack of an aircraft (the equation for wy has an analogous

form):

' - ) R (1.36)

The following inequalities are the conditions for the aperiodic
and oscillational stability of the solutions to Equation (1.36):

*—ﬂ—l-a e ’—njﬁj O. (l 37)
zb y 2‘“ > ) N
c* — -
y @, =
(2_”‘z§,"‘”121)>0- (1.38)

The solution to Equatien (1.36) for an aircraft possessing
static stability, usually has a form corresponding to the oscilla-
tional character of the motion and can be written in the form:

a(T)‘:e_Et'Al(a (O)v o (O))'COS [(;OT—{—L?O ((l (O)v a (O)]’ (l . 39)
where
I Y K- §
=3 (2 By \

A7 and ¢g are arbitrary constants, depending on the initial
conditions a(0) and a’(0).

Since the value & is usually not high, the disturbed motion
by angle of attack then has an oscillational character with an
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oscillation period determined by the following formula;

After conversion to dimensional values the approximate expres-
sion for the period of longitudinal oscillations Tu can be

represented in the form:

-

—_ e (1.40)
Ta——QTC ‘/ —m;quA -

As follows from Equation (1.36), with deflection of the elevator,
after damping of the transient condition, the angle of attack of
the aircraft varies by the value Aap, which is approximately equal
to

—nlenr
Aoy i (1.41)
mz :
B. Isolated Lateral Motion.

From the system of Equations (1.35) it follows that the iso-
lated lateral motion of an aircraft with small disturbances is
described by a system of differential equations of fourth order,
and consequently depends on the four roots of the characteristic
equation. The characteristic equation usually contains a pair of
complex-conjugate roots, which represent the yawing motion of the
aircraft; one negative root, which is large in absolute value,
represents the rolling motion and one real root, which in the gener-
al case is positive and small in absolute value, is negative and
represents the so-called spiral motion of the aircraft, caused in
first order by the development of side slip due to the effect of 29
gravity during rolling. Since we are interested in the future in
rather rapid motions, the spiral motion of an aircraft, which is
slow, will not be studied and in Equations (1.35) we have set ggp =
0. In this simplification the slow rolling motion of the aircraft
is not taken into account and the aircraft is neutrally stable
with respect to rolling.

To find the simple qualitative relationships let us make
additional simplifications of Equations (1.35), i.e., let us set
the following coefficients equal to zero:

(ar oy ):myx:();

(1.42)
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With such simplifications the solution to the equation for change
in the angle of side slip of an aircraft is independent of the
angular velocity and the angle of bank, and the equation itself can
be written in the form:

(1.u43)

i.e., it is fully analogous to the equation for the isolated longi-
tudinal motion (1.36).

The conditions of the aperiodic and oscillational stability
of the solutions are written exactly as (1.37) and (1.38):

( _B CE .E§y> O
—myt ) >0 (1.44)

d - '
(—S—7) >0 (1 us)

The yawing motion of an aircraft has an oscillational charac-
ter with an oscillation period determined by the following approxi-
mate formula, written in dimensional form:

TQQQIE __JL.
—qusl (1.46)

We can approximately look also at the isoclated disturbed rolling
motion of an aircraft which is written by satisfying Equations
(1.42) in the following simplified equation:

w

x—mxx°mx=m_ﬂx'§+ﬁia‘8;a (1.47)

The solution to Equation (1.47) when RB=6 5 = 0 is represented in /30
the form of an exponential time function and is stable in those

cases when ﬁgm < 0.

The results which pertain to the properties of isolated longi-
tudinal and lateral motions, are fully sufficient for further
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studies of spatial motion.

6. Characteristics and Basic Problems of the Dynamics
of Motion of Modern Aircraft.

With what then are the characteristics of spatial motion of
an aircraft associated in comparison with the isolated motions?
Mathematically these characteristics are due to the equations in
the general case of spatial motion not being separated since the
motions of an aircraft relative to the major inertial axes 0X1,
0Y; and 0Z; are interrelated. If the motion relative to the axis
0Z1 is determined to be longitudinal and relative to the axes 0X
and 0Y; to be lateral then with spatial motion we can speak of an
interaction or interrelationship between the longitudinal and
lateral motions. The reasons for such an interaction are several
and all of them exert some influence on the motion of the aircraft.
We can determine the following basic forms of the interaction of
longitudinal and lateral motions of an aircraft: aerodynamic,
kinematic, inertial and also the interaction caused by the effect
of the gyroscopic moment of the engine.

A. Aerodynamic Interaction

By the aerodynamic interaction we mean the effect of the de-
pendence of the aerodynamic derivatives of the stability of the
lateral motion on the parameters of the longitudinal motion, in
first order on the angle of attack o, and the aerodynamic derivatives
of the longitudinal motion on the parameters of the lateral motion
(for example, on the angle of side slip B).

Above (see Section 3) the basic system of equations of dis-
turbed motion was simplified by linearization. The linearization
was carried out relative to the parameters of the original steady
and straight flight without side slip. The retention in the ex-
pansion of only first order terms of smallness was one of the
conditions for the existence of separation of the equations. How-
ever, as noted above, the dependence of the aerodynamic forces and
moments on the parameters of motion in fact has a more complex
character, especially with nonsymmetric flight (for example, during
flight involving side slip) or the presence of rather large dis-
turbances. In this latter case we must take into account the de-
pendence of the rolling moment and the yawing moment not only on
the angle of side slip, angular rolling and yawing velocities, but
also on the angle of attack. Thus, for example, in studying the
rolling moment (or its coefficient) we took in Section 3 31

_ a by 4w, o
m,=— mf,.[‘ —+ mxaoa—r .’ﬂxy -y -+ mrw,,

In studying the original system Bp = 0, under the condition of
small disturbances, such an approximation for the rolling moment
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corresponds to the real picture to a sufficient degree. In the
same case, when the disturbances reach large values, we can never
ignore the effect of the angle of attack on the rolling moment in
the presence of the angle of side slip, since in certain instances
variations in the angle of attack may
change even the sign of the rolling

Figure 1.4 it is obvious that a more
precise approximation of the rolling
moment may be obtained if we introduce
the following relationships:

L1
9,001 T INN

8
642 ! . moment during side slip. Figure 1.4
~0.002 oo F, . shows examples of the dependences of
’ ﬁ&V, I b the derivatives of the moments of roll
7§ . I!, and yaw, according to the angle of side
y wl“—wl } D slip, on the angle of attack. From
| ~ F 1
| ;

F 8

ny
oda

mb=mb |- a.

X

Analogous dependences can be cited
for the coefficients of the yawing

T T | &;i
3 ijﬁ moment (Fig. 1.5) and the coefficient
of aileron efficiency; the coefficients
Fig. 1.h4. of the lateral force depend less on the

angle of attack and in such case such
precision is virtually not required.

For the coefficients of the longitudinal moment, taking into
account the disturbances which are insignificant in value may also
produce the necessity for introducing approximations which allow
for the effect of side slip. Such an approximation may be made

only approximately,

P 2 -
m,=msa+-c,5%;

and analogously for the 1ift
cy=cia-+ o,

0

However in practice the effect of side slip on the derivatives mg
and cg is small.

In allowing for the dependences mentioned above, the principles /32
of separating the system of equations of the disturbed motion into
two independent systems, which describe the longitudinal and the
lateral disturbed motions, is disrupted. Thus, the more accurate
approximation of the aerodynamic coefficients indicates the presence
of an aerodynamic interaction between the lateral and the longitudinal
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motions. The terms of the equations which determine its interaction
are nonlinear. Consequently, in the general case account is taken
of the aerodynamic interaction, thus leading to the necessity of
solving the system of nonlinear equations that is necessary to do

even if computers are used. In the following sections we shall
look at several problems where the manifestation of the aerodynamic
interaction is substantial. In each, if it is taken into account,

we shall make special stipulations.

B. Kinematic Interaction

When an aircraft enters strongly into a roll, when its axis
0X1 practically retains an unchanged position in space, a simul-
taneous change in the angle of attack and the angle of side slip
of the aircraft occurs. This 1is due to the appearance of a kine-
matic interaction of motions. To clarify this type of interaction,
let us look at a simplified diagram of the motion of an aircraft
during rolling.

We shall assume that the axis of the aircraft 0X; and the
vector of the flying speed V retain a constant position in space

and the aircraft begins to change the angle of bank. Then during
rolling y = 90°, the angle of attack of the aircraft ag "changes"
to the angle of side slip B, and when vy = 180°, B = 0, a = ~ag,
etc. (Fig. 1.6). The terms which determine the kinematic inter-

action enter into the equations for o'’ and B'.

Let us obtain the results written above from the equations of

motion. For this, in the equations for o and B, let us omit all
terms which determine the forward motion of the 0X; axis, i.e.,
let us set equal to zero all terms other than Buwzu and -awzpu. We

find the following system of equations:

o' 48 (0,p)=0;
b —a(0p)=0; (1.u48)
Y =po,

25

~
w
w



Instead of wwy, let us substitute the value y' equal to it, and
transform Equations (1.48) into the form

o' By’ (1)=0;
} (1.49)

' —ay'(r)=0.

It is easy to find direct proof that the solution to the sys-
tem of Equations (1.49) for the arbitrary function y(t) and the
initial conditions a(0) = ap, B(0) = 0 has the following form:

a(t)=a,Cos y;
B(t)=gqysiny, } (1.50)

i.e., a and B in the assumptions made above concerning the constancy
of the position of the 0X; axis in space are periodic functions
of the angle of bank Y.

=]
% | B=cx, G0,
v v v
y=0 y=90° y=160°
Fig. 1.6

In the general case the 0OX; axis under the condition of rolling
of the aircraft is shifted and rotated Iin space and the changes in
the angles of attack and side slip have a more complex character.
However, at the beginning of the motion, and also during turning of
the aircraft at very high angular velocities of rolling Wp, re-
lationships (1.50) qualitatively describe the changes in the angles
of attack and side slip quite well.

C. Inertial Interaction

~
w
=

|

In'the equatlons of the moments (the equations for the deriva-
tives Wy oy Wy, wx) enter the terms which contain the _products of the

angular velocities of the type wa Wy s wa°wz and Cwy+wg. These
moments can be conditionally termed moments of inertial interaction
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or gyroscopic moments. The physical meaning of these terms in the
equations of motion consists in that they take into account the
appearance of centrifugal forces of
inertia during the turning of an
aircraft relative to the axis which
does correspond to the major industrial
inertial axis. Let us look, for
example, at the appearance of the
moment (Jy—Jx)wy-wx, which acts on

the aircraft relative to the 0Z; ax-
is. When the aircraft turns at angu-
lar velocities w, and wy, the moment
from the inertial forces acts on it
and can be approximately determined

in the following manner. Let us

look at a simplified model of an
aircraft, i.e., let us assume that

its entire mass is concentrated in

two equal loads M; and M,, distributed

Fig. 1.7. at a distance I from the center of
mass. The motion of the aircraft at
angular velocities wy and wy are equivalent to its rotation relative
to the vector © (Fig. 1.7). 1In this case the centrifugal forces,

which are found using the relationships that are known from mechanics,

Fi=MrQ2=M, sino-Q2,
F2=M2r92=M21x Sillt?-Q?'.

act on the forces M; and M. The expression for the moment from
these forces is found after multiplying the values of the forces by
the respective arms:

M]z' e Fll . coso- Fyl, coso.

Taking into account that 2M1Z§ = Jy - J, and

RQsing=uw, Qcose=uw,,

we find the final expression for the inertial moment relative to
the 02, axis:
‘ih
Mz =(Jy—J ) oy0,.
(1.51)

Analogously we can find the expressions for the inertial moments
relative to the axes 0X; and 0Y; (see, Fig. 1.8):

in
My =(J,—J, )0, (1.52)
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AMi2=U;—Jﬁww» (1.53)

From expressions (1.51) -
(1.53) it follows that the ap-
pearance of the inertial moment
relative to each of the major
inertial axes is due to the angu-
lar velocities of the aircraft
motion relative to the other two
orthogonal axes. Thus, the motion
of an aircraft relative to all
these major inertial axes in the
general case become interrelated
if the vector of the angular
velocity does not correspond to
any of these axes. In this case,
since during the maneuvering of
an aircraft the greatest angular velocity is usually the angular
rolling velocity, then as follows from the formulas given above,
the greatest influence is exerted by the inertial moments Mln aﬁ,Mgn

The effect of the inertial interaction on the dynamics of an
aircraft in carrying out rolling maneuvers is quite substantial.
To a large degree the characteristics of the spatial motion of an
aircraft are due mainly to this type of interaction.

D. The Effect of the Gyroscopic Moment of the Engine

For completeness of the picture let us say several words con-
cerning the interaction, caused by the presence of the rotating

rotor of the engine. The rotating rotor of the engine with the
kinetic moment (J,,, weng) represents a gyroscope, and as any /36

gyroscope in response to a certain external moment applied on it
causing it to turn at an angular velocity w, it will tend to
precess in an orthogonal direction or will create a moment equal to

7 op———— —
gyr [Jengweng'w] (1.54)

To take into account the effect of the gyroscopic moment of
the engine, in the right-hand sides of the equations of spatial
motion of the aircraft it follows to add to the equation for wy the:

term

Teng®eng " “z
J
Y
and to the equation for éz, the term
J w . W
eng eng' y
J
3
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The presence of the gyroscopic moment of the engine leads to the
appearance alsc of yaw when the pitching maneuver is carried out by
the aircraft, and when the angle of yaw is varied the angle of at-
tack begins simultaneously to be varied (Fig. 1.9). In the figure
the arrows show the direction of motion of the aircraft nose during

.®e°%

rd
7
749%52?/;/2

rig. 1.9.

the maneuver under the influence of the gyroscopic moment of the
engine. During rolling maneuvers the existence of the gyroscopic
moment of the engine leads to a slight nonsymmetry in the motion
of the aivrcraft as a function of the direction of rolling (port or
starboard). However, the effect of the gyroscopic moment of the
engine on the motion of the alrcraft within the framework of the
questions studied in this paper leads to a quantitative change and
further on in this paper we will not take it into account. In
each specific instance allowing for it presents no difficulty.

Thus, from the basic principles studied above of the interaction
of the simplest forms of aircraft motion (longitudinal and lateral)
the major ones are the inertial, aerodynamic, kinematic and gyro-
scopic interactions. In this case in the inertial interaction the
shape of the ellipsoid of inertia of the aircraft is of fundamental
significance. With the elongated ellipsoid of inertia, character- /37
istic of modern aircraft and other winged craft, the differences
in the inertial moments (Jy - Jp) and (Jz; - J,) are very large
values. In this latter case it is especilally important to study
all types of aircraft motions, accompanied by any substantial rolling.
The motion of an aircraft at an angular rolling velocity, as was
shown above, leads to the development of large moments of inertial
interaction acting on the aircraft. In studying the motion of an
aircraft this causes us to turn once more to the total equation of
motion in nonlinear form, since in this case it is not allowable
that the terms which contain the products of the angular velocities
be omitted.

In this connection, one of the most important problems in dy-
namics is the study of the class of spatial motions of an aircraft
with angular rolling velocity. Here we can mention any number of
spatial maneuvers of an aircraft that are widely used in flight
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practice:

(1) Entry and exit from turn and chandelle;

L= G -::ET== ~
b)Turn with !

a) "Roll"(y~J60° or variable dlrectlgn.
greater) (7¢/80°) //

_.séﬁﬁ%\ﬁ,\\ A __-,'ér
.}’,«j - %‘

e N\
iy/'/ y,%

- d) Entry 1nt% dive wyth
c¢) Half-loop with tupn. (¥~ 760°) Y:}»

turn, (y~180°) .
Ylt -

Fig. 1.10.

(2) Split S in horizontal flight;

(3) Immelman turns (turns with different values of the normal
G-force.)

(4) Split S during entry into a dive (turn with negative
normal G-force);

(5) Snap and slow turns;

(6) Turn with variable direction of loop (figure eight), etc.
(Fig. 1.10).

From the above it follows that in the general case we must
analyze the controlled motion of an aircraft with the simultaneous
action of the pilot using lateral and longitudinal controls and
in a number of instances directional control as well. A slight
simplification in solving these complex problems may be obtained if
we take into account that all the maneuvers mentioned above, as a
rule, occur uvith a quite small change in the linear flying speed,
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which can be ignored. This assumption will be used in the future.
The next sections of the book are devoted to a description of the
different methods used and the analytical results of the classes

of aircraft motion mentioned above and several conclusions concerning
its formulation which follow from this analysis.
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CHAPTER II

STABILITY OF AIRCRAFT MOTION DURING STEADY ROTATION
ABOUT THE LONGITUDINAL AXIS

7. Deriving the Conditions of Stability of Aircraft Motion
During Steady Rotation About the Longitudinal Axis

Before we begin an investigation of the dynamics of an aircraft/39
in carrying out complex spatial maneuvering accompanied by rolling,
let us look at the stability of its motion during rotation at a
constant angular velocity relative to the longitudinal axis. Study
of this special type of motion permits finding several character-
istics of the aircraft motion associated with the presence of non-
linear terms in the equation of motion.

Let us look at a simrmplified
physical diagram of the aircraft
motion. During rotation of an
aircraft about the axis that does
not coincide with the major inertial
axis and comprising a certain angle
o with the velocity vector V, in
addition to the aerodynamic moment
of stability acting on it there will
be also the inertial moment from the
centrifugal forces which can be

Fig. 2.1. easily computed approximately 1if we
assume that the entire mass of the
aircraft is distributed along the axes 0X; and 0Z;. Let us assume

that the static stability is high, then the _rotation of the aircraft
will occur relative to the velocity vector ¥V (Fig. 2.1). Let us
look at the force df, which acts on the elementary mass dm of the
aircraft. It is equal to the product

df=o0lx;sinBdm,.

If we multiply the force df by the arm (xl cosB), we find the ele- /U0
mentary moment of the inertial forces

d/v{:_n: dfx; cos B=ux2sin B cos Bo2dm.
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Carrying out summation (integration) over the entire mass of the air-
craft, distributed along the axes 0X; and 0Z;, we find an expression
for the total inertial moment

Myi n=;§; x?sin(icos Euﬂdm—izfsin@cos Bo2dm— (2.1a)

=(J,—J ).

An analogous expression can be found if we look at the deflection
of the aircraft from the angle of attack o and determine the iner-
tial moment acting relative to the axis 0Z:
in
Mz =(Jy—J ;) v (2.1b)

Both moments, computed in this manner, are proportional to the
angles of deflection (B or a) and tend to increase them. Let us
look in somewhat greater detalil at the yawing motion of an aircraft
and assume that the degree of its pitching stability is so high that
the angle of attack during the motion can be assumed to be constant.

During the rotation of an aircraft at a constant angular roll-
ing velocity w = const, in addition to the aerodynamic stabilizing
moment, an additional destabilizing moment will act on it, the ex-
pression for which was found above, proportional to the square of
the angular rolling velocity w, which decreases the "effective" de-
gree of static stability of the aircraft and with a high value of
the angular rolling velocity will lead to a loss in motion stability.
It is obvious that the losses in stability will take place when the
inertial moment is greater than the stabilizing aerodynamic moment.
Consequently, there exists a certain critical value of the angular
rolling velocity w, which can be determined from the condition that
the aircraft during yawing motion (in analyzing the longitudinal
motion, during pitching) is neutrally stable. In approximate form
this condition of neutral stability 1s found by equating the iner-
tial and aerodynamic moments and can be written as:

(Jo~JJo2+ mbgsl O (2.2)
From this relationship there follows the approximate formula

for the critical angular rolling velocity, which losses in stability
of pitching motion of the aircraft are possible

w, =i/ "™ (2.3)
B J

zJ

Analogously, if the degree of pitching stability of the air- /8l
craft is much less than its yawing stability and if we assume that
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during the time of the motion B = 0, then the condition of neutral
stability of pitching motion of the aircraft, turning in a rolling
motion, can be written in the form of the equation

y—J,) w2+m;qsbA=0,

whence it is easy to find an approximate expression for the critical
angular rolling veloeity, in which losses in the stability of the
pitching motion of the aircraft are possible

.
l/—m;qsb;\ (2.4)
0, = —_—
Jy—Jy

These expressions have been obtained on the assumption that
the motion of an aircraft is a "plane one", i.e., there is included
in the change either only the angle of yaw (o ~ const), or the angle
of pitch (B ~ const), since in these cases we can not take into
account the pitching motion of an aircraft, for example, in analyzing
a yawing motion. In all the discussions given above it was essen-
tial that the original motion of the aircraft be taken as the basis,
in which the aircraft turns relative to the vector of angular veloc-
ity and "slips" along a certain cone, caused by the rotation of the

Fig. 2.2.

axis 0X; around the velocity vector V, corresponding in the example
with yawing motion to a constant angle of attack ag (Fig. 2.2), and
in the example with pitching motion, to a constant angle of side
slip B~ 0. In order for the original motion to occur, it is nec-
essary that the value of the natural frequency of the aircraft os-
cillations (in the example with yawing motion this is the frequency
of the longitudinal oscillations) be considerably greater than the
angular rolling velocity. In this case the aircraft succeeds in
reacting to the disturbances caused by the kinematic interrelation-
ship during rolling between the angles o and B, having a frequency
equal to the value of the angular rolling velocity (see Fig. 1.6).

Let us see in greater detail how the rolling motion of an air- /42

craft develops. Let the aircraft, possessing a large reserve of
longitudinal stability and trimmed at the angle of attack ag > 0,
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begin to roll. 1In such case at the first moment of time it rotates
relative to the major inertial axis 0X;, which because of the kine-
matic Interrelationship of the angles o and B will lead to the si-
multaneous appearance of the angle of side slip B and a slight de-
crease in the angle of attack ap. Due to the large longitudinal
stability of the aircraft the angle of attack ag begins to be re-
covered thus leading to the appearance of an additiomal angular
velocity Awz and to a deviation of the vector of the total angular
velocity from the axis 0X;. As a result of such a condition the
motion is regulated, in which the aircraft "rolls over'" along a
certain cone, the axis of which coincides with the vector V, re-
taining the angle of_attack ag between the plane of the wings and
the velocity vector V.

With a rapid rotation of the aircraft, when the angular rolling
velocity significantly exceeds the natural frequencies of the os-
cillations in pitching and yawing, the aircraft will not be able
to react to the periodic variations,in the angles o and B at the
frequency w,, caused by the kinematic interrelationship, and its
rotation will take place relative to the major inertial axis 0X;.
The angles of attack and side slip in such case on the average have
zero values. In this case the spatial characteristics of the air-
craft motion are substantial. The aerodynamic coefficients of the
stability during rapid rolling turn of the aircraft no longer in-
fluence its motion to any appreciable degree. The rolling and
turning motion of an aircraft at the limit, when w, + o, is al-
ways stable (see Section 16). The conditions of stability, cited
at the beginning of the paragraph, reflect the basic characteristics
of the aircraft motion, however they do need refinement. Even from
the approximate analysis it was clear that the inertial moments,
arising during rotations of the aircraft, can change qualitatively
the characteristics of the motion, in particular they can make it
unstable.

Let us look in greater detail at the stability of aircraft
motion during rotation relative to the longitudinal axis 0X; at a
constant angular rolling velocity w, = const. In this case, as the
original motion, we can look at the straight and steady flight with
a small angle of slope of the path to the horizon. We can assume
that in the condition of steady rotation at an angular velocity
wpe = £ = const, the flying speed remains constant, i.e., Vg = const;
in the same manner the equation of the projections of forces for
the axis 0X, 1is automatically satisfied and in the future we shall
not look at this equation.

To study the stability "in the small", let us transform the
equation (1.28) into equations in variations; after linearizing
them relative to a certain steady motion, the characteristics of

which will be the presence of the angular rolling velocity w, = 2,
we designate the parameters of this system by the index zero. With
small deviations from the steady state system the parameters of /43

motion can be written in the following form:
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a=0,-| Ac; )
0 =0, An,;
p:po‘l‘Ap;
oy = w0y Ay
(—')x=9=c0nst; (2.5)
F=A9;
Yo=2-£,

If we substitute the values of expressions (2.5) into the
basic system of equations (1.28), we find Iin each equation three
groups of terms. One group will consist of the products of small
values - these terms can be omitted with linearization as terms
having a second order of smallness. The second group of terms in
the equations will contain values corresponding to the original
system of steady rotation - these terms in total must be equal to
zero since the original conditions also satisfy the system of equa-
tions of motion. And finally the third group of terms of each
equation will represent terms containing the desired variations of
parameters of first order. The system of equations for the original
system of steady rotation has in this case the following form:

-3

[4 p—
U = — " Oy o — LS boF S oy
o = —pAQuy 4 my o -+ m“’z . ‘°z0 —{-_;zzeb- b‘e‘
'——Pwm4“h4uw+04+- gomsmym (2.86)

G — A —~w
© 0= Bp Qo+ mﬁﬁo + my ")yo -+ myr L)

— —w
= . 8g.
wm»m;9+m g s

Let us note that during flight with large dynamic heads and
at high speeds, as calculations show, the influence of gravitational
forces on the motion of an aircraft relative to the center of mass
in the types of maneuvers studied here is negligibly small and the
gravitational terms in the equations of motion can be omitted.
Then in analyzing the stability of motion of an aircraft (without .
taking the gravitational terms into account) the requirement for
studying the kinematic equation no longer exists and in final form /4u
the system of equations in the variations, after excluding equa- —_~
tions (2.6) for the steady state system and neglecting the terms
of second order of smallness, will have the form:
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The variability in the flying speed can be taken into account
in equations (2.7) through changes in the aerodynamic coefficients
of damping, as noted in Section 4. We must note that the equation
of the moments acting on the aircraft relative to the axis 0X;, is
automatically satisfied under the condition

mgszUZCZO. (2.8)

In other cases when expression (2.8) is not satisfied, the condi-
tion wxy = © = const requires additional deflections of the lateral
controls (8;), since in the condition of disturbed motion the angle
of side slip B and the angular yawing velocity vy will be changed.

Let us note the following quite interesting result which fol-
lows from the calculations carried out. The values of the parame-
ters of the original flight path and the terms from the gravita-
tional forces were not included in the system of equations in vari-
ations (2.7). This can be explained by the fact that in satisfying
conditions (2.8) the equation for the rolling motion is separated
and can be solved separately. As a result the system of equations
(1.26) becomes a system of linear equations with a periodic dis-
turbing function, caused by the gravitational forces, and in lin-
earization the terms from these distrubances remain only in the
equations of the original motion. Thus, regardless of the type
of controlled motion of the aircraft, described by solving the sys-
tem of equations(2.6), if expressions (2.8) are not satisfied, its
stability is determined by the system of linear equations (2.7).
When © = const, the system of equations (2.7) is a system of linear
equations with constant coefficients and when Q(£) it is a variable
value depending on time; the system of equations is a system of
linear equations with wvariable coefficients.

Let us transform equations (2.7) for the case @ = const into
a system of two equations of first order for the variables o and B.

After differentiating the first and third equations of system (2.7) /u5

and satisfying the elementary transformations, we find the equations
of motion of an aircraft in the form
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a

—(1+B)Qpa'+(ﬁz‘§u—3 %”-);J,Qa:O.

From comparison of equations (2.9) with (1.36) and(l.43) it
is clear that the rotation of an aircraft at a constant angular
rolling velocity £ = const has led to an interrelationship between
the motions involving the angle of attack and those involving yaw-
ing, the degree of which increases in proportion to the square of
the angular rolling velocity §£. 1In connection with this, at small
angular rolling velocities the equations can be separated with an
accuracy up to values of the second order of smallness.

Let us cite the conditions for the stability of solving the
system of equations (2.7) for the case of a constant angular roll-
ing velocity f = Qy = const. If we make the necessary computations,
we find the expression for the characteristic equation of the system
of equations of motion (2.7) in the following form:

M4 A3 A4 A Ay=0, (2.10)

where the coefficients 43, A5, A4 and A¢ are functions of the par-
ameters of motion and the aerodynamic characteristics of the air-

craft:

A _1/__; oz oy,
3y T mY (2.11)
_ - 3 2 3 [
Ay =(m"z --~-m"’y)(i—c”)4 o my_ 2 fu (2.12)
\ 2p v 5 2 om bmy 2 . %

— o (mf - mz ) o202 (14 ABY;

A, = umb CE -“’_’y T C,II/ —o —a
1= p-my———2—f7ly ”lz'%_? ——:LQQ%(mz]ZD—}-myv)_F (2.13)
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For the stability of motion it is necessary that all real parts

of the roots of the characteristic equation (2.10) be negative. On
the basis of the Ross-Hurwitz criteria, we can write the conditions
of stability of motion in the form

320, A >0 hozad;

A
. (2.15)
R= Aa (AzAl - AsAo)—A? >0.

From expressions (2.11) and (2.12) it follows that for the stable
motion of an aircraft the conditions A3 > 0 and 4, > 0 must be sat-
isfied for all values of the angular rolling velocity. Calcula-
tions also show that in this case the condition F > 0 is also sat-
isfied for all possible values of 2. There remains the single con-
dition of stability Ay > 0, which as a function of the value © can
either be satisfied or not satisfied. This condition, since it is
associated with the sign of the free term, is a condition of aper-
iodic stability of aircraft motion during rotation at a constant
angular velocity relative to the longitudinal axis and will be
analyzed in detail below. When A3 < 0 the unstable motion of an
aircraft has an aperiodic character.

8. Analysis of the Condition of Aperiodic Stability
of Motion During Steady Rolling Turn

Let us proceed to an analysis of the free term of the charac-
teristic equation Ay - The basic parameters, which determine the
aperiodic stability of motion of an aircraft during isolated later-
al and longitudinal motions, are the values of the excess static
stability Eab and mB. As noted in Section 5, the condition of sta-
bility of isolated %ongitudinal and lateral motion is the satis-
faction of the inequality

(2.16)

N—— e e

With spatial motion at a high value of the angular rolling
velocity w, = £,, the condition of stability is complicated and
in expandeﬁ form is written in the following manner:
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Direct proof will show that when @, » 0, conditions (2.16) fol-
low from inequality (2.17). The condition of stability (2.7) given
above 1s the basic one. The purpose of further studies in this
paragraph will be determining the types of stability regions as a
function of the different parameters of an aircraft and finding ap-

proximate criteria of stability.

As follows from expression (2.17) and from the approximate
qualitative discussions, given at the beginning of the chapter, the
basic factor which determines the stability of motion of an aircraft
is the relationship between the excess static stability mP and ﬁ%b
and the values which are proportional to the square of thé angular
rotational velocity of the aircraft relative to the longitudinal
axis. In this respect in first order let us determine the form of
the boundaries of the stability regions of aircraft motion on a
plane with the coordinates W%, and @ . As follows from condition
(2.17), the boundaries of the stability region in these coordinates
is a hyperbola described by the relationship

XY = -K, (2.18)
where
. _ em
X=X,— ApQf; Xlz(""zb' y?p-b);
) 8 cz _iy
Y =Y, —BpR2 YV, = -—-my—l— o ; (2.19)

o ¢ —
K=K, K0:<—A f—nl@)(B —2-"—_—-myy).

Examples of the boundaries of the stability regions for dif-
ferent values of the angular rolling velocity Q3 are given on Fig-
ure 2.3. From expressions (2.18) and (2.19) it follows that the
hyperbolas in the coordinate axes (ﬁgb, 0, ﬂy) have asymptotes de-

scribed by the equations:

~
=
w

J— c® me

oy — 2 Al o~ 2.
myp= Api+ 2“13-A990, (2.20)
—4 : . cg —r;z(;

~—n9==ﬁp90—uf L =~BpQ2, (2.21)
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In those regions of the plane where the values ﬁg and P differ

substantially from one another, the hyperbolas approach %helr asymp-

totes (see Fig. 2.3). Hence, in particular, it follows that in
these regions of the parameter wvalues

A%l o o of static stability of an aircraft ap-
05 S 58741 proximate criteria of stability can be
Yl e used, by substituting the equation of
p ot the hyperbola with the equations of its
£ @=00 asymptotes. On the basis of these dis-

cussions we can find approximate expres-
AN . . " .

P sions for the angular rolling velocities,
B =0,0986 1n.whlch the lo§ses in stability occur.
*—1§%~' b Using the equations of the asymptotes

sl i) N

~ £ e — (2.20) and (2.21) we find
Qﬂ?%g 3 Unstable

’ E -Q‘-i /7_1; (q)a__‘/_m&b (2.22)
_ _.‘/_ag
& (I)a = ’*B‘y‘_‘ . (2 . 23)

Formulas (2.22) and (2.23) can be feasibly used in making a
preliminary analysis in those widely used cases when the excess
longitudinal and lateral stabilities of an aircraft differ substan-
tially, and the damping of the motion is not too high. From expres-
sions (2.19) it follows that the centers of the hyperbolas lie on a
straight line, described by the equation

X_l_Y__ (2.24)
A B
c,ﬁj cgm?
Since the values % and .m;— are usually substantially smaller

than the values of my, and 7P, then the equation of the lines of the
centers can be approximately”rewritten in the form

— = Jy—J J
me F o oogmb T x ¥
b= 5 B ”I// Jo— 1y (Jz> (2.25)

i.e., the slope of the lines of the centers of the hyperbolas prac- /49
tically do not depend on the flight path, but are determined by the
inertial characteristics of the aircraft.

With a change in the value of the angular rolling velocity of
the aircraft the boundaries of the regions of stability of motion
are shifted (see Fig. 2.3). Let us introduce the equation of the
enveloping boundaries of stability in the region of variation &,
from zero to oo . Construction of such an envelope permits clarify-
ing the region of the "absolute" stability of motion of an aircraft
for the entire possible range of the angular rolling velocities.

L1




For the envelope the. following system of equations must be sat-
isfied:
F(92)=A0(92)=XY—$—K=,O;

9F () _ (2.28)
092 )

Excluding the parameter Q2 from equations (2.26) we find the equa-
tion of the envelope

— K2+ 2K, (Al BpXy) = (BpX, — ApY )2 (2.97)

In order to reduce the equation of the envelope (2.26) to a conven-
ient form, let us introduce new variables n and & using relation-

ships

n=AuV1+BuX1;} (2.28)
E:BP‘XI_AP‘YP

It is easy to prove that the axis On agrees with the line of
the centers of the hyperbolas. In fact, if we equate & to zero,
then we find the equation of the axis On, which agrees with the
equation of the line of the centers of the hyperbolas (2.24).

The system of axes &£0n 1is scalene and the axes 0f and On form
identical angles with the axis 0X; (Fig.. 2.4), the value of which
is equal to

B
!aoll=arctg—A~. (2.29)

Making a substitution of variables in equation (2.27), according to
formulas (2.28), we find the equation of the envelope in the sys-
tem of axes &EO0n:

2K0(n—%°>:£2. (2.30)

From expression (2.30) it follows that the envelope is a para-
bola, whose axis coincides with the line of the hyperbola centers
(see Fig. 2.4).

Let us show that the parabola of expression (2.30) is tangent
to the axes OXl and 0Y,. The values & and n, when X1 = 0 or Yl =
0, are mutually relateé by the relationship

2

n = + &. (2.31)

If we substitute equation (2.3) into the eguation of the parabola
(2.30), we find that the equation can be satisfied and the tangency
occurs at values of £ and n determined from the equations
&=kkw
=K. (2.32)
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From expression (2.31) it follows that the envelope 1s tangent to
the axes X;0Y;, at the points with coordinates on the axis 0Y, equal

to K,/Au and on the axis 0X; equal to (Ky/Bu).

The equation of the envelope defines on the plane (ﬁgb, 0, ﬁg)
a certain "corridor". In choosing the values ﬁgb and 7P from thi%
corridor the aircraft will be stable at any value of the angular
rolling velocity. It is obvious that the wider the corridor the
easier will be the choice of parameters such as mgb and @M. Quan-
titatively we can determine the width of the corridor by analyzing

the value |&| when n = const. From expression (2.30) it follows

that
18]~V 2K,.
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Taking into account the relationship between the scales of the var-
iables in the axes £0n and X,0Y; of expression (2.28) we find that
the width of the corridor in the system of axes X,0Y, is proportional
to the expression

B - a —
L (-—Ac—’-”n?“z)(Bfé’- E‘”) (2.33)

The width of the corridor is increased with increase in the values
of the coefficients of damping and is decreased with increase in

the height of flight of the alrcraft With zero values of the co-
efficients of damping c@& 08 mU% the corridor is degenerated

2
into a line and the hyp%rbolas gre merged with their asymptotes.

Construction of the regions of stability in the plane of the
parameters m8 and m%y is convenient in analyzing stability, when
the parameters of an alrcraft are either not determined or may be
varied in a certain range. In those cases when the aerodynamic pa-
rameters of an aircraft are a priori determined, for analysis of
stability it is convenilent to simply construct a graph of the func-
tion A,(Q) and use conditions (2.15). On such a graph we can see
with spec1al clarity the meaning of the critical angular rolling
velocities introduced above. Since A4 and B are positive numbers,
then for a statically stable aircraft the following relationships

are always satisfied;
Ag(0)>>0; A (2 —>00)>0. (2.38)

On the other hand AO(Q) is a Q2 parabola which, as follows from ex-
pressions (2.34), can have either two or no zercs, or one zero in

the special case of tangency of the curve AO(Q) of the abscissa axis.
As an example, on Figures 2.5 and 2.6 are plotted the functions

Ay () for different relationships between M3 and Ml and different /52
coefflclents of damping. From these flgures it is ¢lear that the
critical angular rolling velocities wa W, which were introduced
above using equations (2.22) and (2.23) correspond to zeros of the
function 4, (), in which all terms of damping are taken equal to
zero. W1th real values of the coefficients of damping, when the
aircraft has no oscillation dampers, the approximate values of the
critical angular velocities, determined from formulas (2.22) and
(2.23) are near to the zeros of the function AO(Q).

The expression for the zeros of the function 4,(Q) can be ob-
tained precisely in explicit form. For this purpose, if we analyze
22 as the sought parameter, we will transform the expression for

0
Ao(Qg) into the form

@~ (G T | ame B =0 (2.35)
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whence it follows that

=Ry ]

/‘ X, -_-_l’_x_‘l___ Ko }2_4)(1)’1 (2.36)
ABp2 ABp2 ’

For the case of small damping with "dispersed" values of the crit-
ical rolling velocities, from formula (2.36) we can find the re-
fined approximate expression for the critical rolling velocities in
a form which is convenient for computation.
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ool |4 T Large dampingJfl]
NN . : (R
I I -Noml?al casex W
HNNBEN i (RN B B
= R R By 2
qﬁ_‘<S§\ | Zero damp}ng> 7
— \x\\ f/',
T T NN I ~//1L
HREE NAN] [ ]
oozst 1| | L] NN ny ,I.__q
- \\\\ // [
1 ":‘\\\\ ydr//Esp
o T LIRS LT AL T B
) 02| i’p_ \i\\ 0,(7’1:// G)“o,ﬂ.i 006 @
A
Fig. 2.6.
Using the definitions introduced above, we can write /53
w¢=_;
Ap
wp =11, (2.37)
By

If we neglect the small term (K /ABu )2 under the radical and re-
tain only the first term of the representation of the square root
in the form of a Taylor series, we find

u_):’_‘—-’aa[l— Ko 1 7.

24Bu2 (0 — )|’ (2.38)
e -~ 1 Ko 1

o~ 1 et — .
“e m"[ T 545 (wz—mg)} (2.39)

Formulas (2.38) and (2.39), taking into account the comments made
above, agree well with the calculation. From these formulas, in
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particular it is clear that the damping is near_the zeros of the

function Ap(Q). For example, in the case when wy > wg, from ex-
pressions (2.38) and (2.39) it follows that

0p<l og;

0> 0 (2.4%0

In the presence of oscillation dampers on the aircraft, and
also in those cases when the values m%, and mB are near, the func-

)

tion 4¢(Q) in general may not have zeros. Let us determine by what
conditions the parameters of the aircraft will be satisfied in order

that this be done. In order for the Ffunction A((R) not to have
zeros, it is necessary and sufficient that it be positive with a
value of the angular rolling velocity f, when the derivative
(343/3Q) is equal to zero.

The boundary of such a region of parameters is determined from
the condition of simultaneous conversion to zero of the expressions

Ag(RY)=0;

040(®) __ 1.
=0

Comparing these conditions with expressions (2.26), we find that

the equation for such a boundary is the equation of the envelope

introduced above [see equation (2.7)]. However, as has been men-
tioned above, the values of the damping are usually small and the
conditions of stability of an aircraft may be written in the form
of an inequality, from which it follows that the motion is stable
in those cases when the angular rolling velocity lies outside the
zone of critical angular velocities:

2 < min (v}, O)B), (2.1
or o
R > max(w?, u):,;'),

In equation (2.41) the sign min denotes the smaller of the two
numbers w;, wg, and the sign max denotes the larger of them; these
are the zero functions 4g(Q).

)

The appearance of stability losses of motion by a turning air-

craft (which has been analyzed in detail) for a certain critical
angular rolling velocity is not unique. In mechanics similar phe-
nomena are known. In first order in this respect it follows to

note the phenomenon of resonance of rotating shafts (see for example

[13]). The phenomenon of resonance involves the development of
resonance oscillations which may lead to disruption of the shaft

when the angular velocity of rotation of the shaft becomes equal to

the natural frequency of the lateral oscillations. An analogous
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phenomenon may be observed in the operation of a centrifuge in a

washing machine. Resonance in this latter case is observed in the
form of two pulses: when the centrifuge is started up and when it
is slowed down. The resonance is stronger as the displacement of

the center of gravity of the centrifuge relative to the axis of
rotation becomes greater.

A good illustration of the phenomena
noted above may be an experiment with a
model of an aircraft. The model of the
aircraft, whose basic mass is concentrated
in the fuselage, is suspended on a rubber
band, so that the weight of the model is
compensated by the tensile strength of the
rubber. With a deflection by the angles
o and B the model will cause oscillations
relative to the center of mass acted on
by the reduced force T, equal to the
weight of the model (Fig. 2.7). Let us
twist the rubber band and drop the model.
With a weak twist of the elastic the
model of the aircraft will revolve slowly
relative to the major inertial axis 0X;
with little deviation from the vertical.
If the rubber is first wound tightly, the
angular rotational velocity of the model
will be great and will reach a critical
value, in which case the spatial angle /55

Fig. 2.7. of attack begins to increase and the T
model, by rotating, "describes'" a cone
in space, i.e., seeming losses in motion stability are observed
"in the small" (see Fig. 2.7).

Center of
Gravity

Such a motion of the model is similar to the motion of an
aircraft with steady rolling turn, the only difference being that
the degree of stability in the model with motion relative to the
axes 0Y) and 0Z; 1s identical and in the aircraft it is usually
different.

Let us note that the angular rotatiocnal velocity of the model,
after reaching the critical value, practically does not increase,
since the change in the spatial angle of attack of the model in the
region of the critical velocity acts similarly to the centrifugal
regulator (Watt regulator). With an increase in the angular velocity
the angle of attack increases, thus leading to an increase In the
inertial moment of the load on the rubber relative to the axis 0f
and correspondingly retards the development of angular rotational
velocity.
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9. Stability of Motion During Steady Rolling Turn
in Several Extreme Cases.

Let us look at several simplified extreme cases of the motion
of an aircraft turning in a roll. First let us look at the case of
aircraft motion, turning relative to the longitudinal axis on which
no aerodynamic forces and moments are acting, which case may be
valid during flight with a very small dynamic head (g = 0). If in
this case we further assume (for simplification of all calculations)

that the ellipsoid of inertia has an axis of symmetry, i1.e., J, =

Jgz = 1, then the equation of motion of the aircraft will have the
form:*
jdmZ :.——(j—.])(l) (l)y'
dt oo
TLL (] — T ) 0,0y
dt o (2.42)
j‘_d_mi:O.
Todt J

From Equations (2.42) we find the equations for change in the
angular velocities uwg, and Wy

(2.13)

Solution to Equations (2.43), when J > J,, is always stable and can /56
be written in the form

w,=a cos (nf); }
wy,=a sin (nt), (2.144)
where J—J,
=
=uwu, (0)=const; ,(0)=0.
From expressions (2.44), assuming that w, = const, it is easy

to see that the total value of the angular velocity for the entire

*This case is studied in classical courses of theoretical mechanics
(see [9-101).
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time of motion remains constant (w% + w2 = g2), but the direction
of the vector of angular velocity will %ary relative to the body
(precess) at a frequency n. Hence, it especially follows that the
steady rotation of an aircraft without precession is possible only
relative to the major inertial axis (a = 0), and rotation relative
to any other axis will lead to precession.

If all inertial moments of the aircraft are different (the
Euler case) then it is possible to show (see [9], [10]) that its
rotation relative to the axis with minimal and maximal inertial

moments is stable. In such case the rotation relative to the major
inertial axis 0X;, usually corresponding to the minimal inertial
moment with w, = const, will occur without precession. In the

general case the motion of an aircraft is described by elliptical
functions.

Usually for aircraft the relationship J, ~ Jz 1s satisfied,
therefore, the motion in these assumptions will be almost periodic
and near the motion of a symmetric body studied above.

Let us look at the second exireme case when the moments of the
static stability of an aircraft m, and m% are high, and the inertial
moments are quite small. This caSe approximately corresponds to
the flight of an aircraft in a system with large dynamic heads and
a small angular rolling velocity, when the relative role of the
aerodynamic forces is high in comparison with the inertial forces.
Then when w, = const, during the time of the motion, approximate

relationships such as these will be satisfied:

a=qg=const;
=0,

i.e., steady rotation of the aircraft will occur relative to the
velocity vector of the flight.

Let us look at this latter extreme case of motion, when the
aircraft has infinitely large inertia, i.e., Jy = J5 = oo, the
moments of static stability are small and wy(O = wgz(0) = 0. In
this case the steady rotation of an aircraft will occur relative to

the major inertial axis, i.e., practically relative to the longi-
tudinal axis of the fuselage. If at the initial moment of time
when y = 0, the relationship o« = ag and B = 0 is satisfied, then
when vy = 7/2, we find o = 0 and B = ag. Consequently, the angle
of attack and angle of side slip will be periodic functions of the
angle of bank (see Fig. 1.6): o = ag cos y3; B = ap sin

It is natural that in the general case the motion of an air-
craft has a more complex character, especially when the values of
the aerodynamic and inertial moments are of one order. However,
in the general case we can almost always observe elements of the
extreme cases analyzed above.
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10. The Dynamic Characteristics of Modern Aircraft

Types of interactions between longitudinal and lateral motions
have always existed, however they have become quite substantial
only with the appearance of supersonic aircraft. Which of these
changes in the classification of aircraft and their aerodynamic
characteristics have led to such results? Let us look briefly at
the basic tendencies of the changes in the characteristics of
maneuvering aircraft from the viewpoint of interaction between the

longitudinal and lateral motions.

Fig. 2.8.

High flying speeds have led to substantial change in the forms
of the specific elements of aircraft. Supersonic aircraft (Fig.
2.8,b) in comparison with subsonic (see Fig. 2.8,a) have a more
elongated shape to the fuselage, narrower wings of smaller length
which cause the designers to distribute the basic loads in the

fuselage. As a result, the ratio of the moments of inertia Jz/J,,
Jy/Jx, which was of the order of 2 - 3 for subsonic aircraft, ap-
proaches a value of the order of 10 - 15 for supersonic aircraft.

From formulas (2.22) and (2.23) it follows that with a constant
value of the moment of inertia Jz(J,) and the excess directional /58
and longitudinal stability, such a change in the ratios between the
moments of inertia of the aircraft relative to the longitudinal and
lateral axes leads to a decrease in the critical rolling velocities

by almost 1.5 - 2 times.

For maneuvering aircraft of contemporary groupings it is
characteristic that the excess longitudinal stability during transi-
tion from subsonic to supersonic speeds increases substantially,
which can be explained by the backward shift along the flow of the
wing focal point, i.e., by the increase in the derivative mgy (Fig.
2.9). On the other hand, the excess directional stability of the
aircraft, as noted above, with an increase in the M number is sub-
stantially decreased (Fig. 2.10). All this leads to the fact that,
as a rule, at subsonic flying speeds the least critical rolling
velocity 1s wg, i.e., the critical velocity determined by the
pitching motion, and with transition to supersonic numbers M(M > 1),
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wg and wg swap places and the least critical rolling velocity be-
comes the value wg, i.e., the critical velocity determined by the
yawing motion (Fig. 2.11). Along with the above, in supersonic
aircraft the value of the maximal proposed rolling velocity, as a
rule, is greater thus causing a slight decrease in damping during
the transition involving wings of small length. Summing up, it
follows to note that all the factors mentioned above decrease the
critical rolling velocities and make it easier to reach them in
flight. Typical dependences of the critical rolling velocities on
flying speed for aircraft of various types are illustrated also on
Figure 2.12.
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The results found in the preceding paragraphs, regardless of
the simplified formulation of the problem, permit finding several
qualitative representations of the general case of spatial motion
of an aircraft, accompanied by strong rolling. In fact the relation-
ships cited above indicate that 1f the angular rolling velocity in
the process of motion approaches or exceeds the least of the critical
rolling velocities then the stability of the aircraft motion is
either decreased or in general may be disturbed; in such case the /59
angles of attack and side slip begin to increase monotonically and
if the rotation does not cease, then the aircraft may go into unal-
lowably large angles and at higher dynamic heads even be destroyed.
It is obvious that the smaller the value of the critical angular
rolling velocity, the more probable will be its attainment in flight
during rolling maneuvers. The determinant in this case is the
least absolute value of the critical rolling velocity.

v, rad/sec Let us look at several character-
“LL$ A istics of the aircraft motion in carrying
1] out rolling maneuvers. As noted above

as the angular rolling velocity ap-
proaches the critical value the degree
of stability of motion of an aircraft is

L\

Ped decreased. It is obvious in such case
-;// if certain aerodynamic moments act on
‘iijj 111 the controls of the aircraft, it will

a5 10 then react more strongly than the excess
Fig stability, i.e., the nearer the angular
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rad/sec

rolliing velocity will be to the critical. Furthermore, due to

action of the inertial moments, the deflection of the rudder and
the elevator will lead to simultaneous
change in the angles of attack and side

W,CTrit - slip. In this case the motion of the
AL I aircraft, in a rolling turn, is quite
similar to the motion of a gyroscope,
" I A which under the action of a disturbing
/ﬂ_” VL] moment begins to change its orientation,
i L ) 1 by precessing in a direction orthogonal
[ /M. E%( - to the action of the moment.
u Vampiqgé&ll a7
i % f 152 —. Let us look in more detail at a
§ A - 'LET simplified physical diagram of the mo-
i 1 1;" T tion of an aircraft in a rolling turn
b "ML%?#*q/ji with an angular velocity less than the
’«);Azf‘Douglas X3 critical, with simultaneous deflection
: Lockheed F-10u4 of the elevator. The deflection of the
el elevator leads to the appearance of an

200 w00 600 800 1000 e s
Vind’ additional component of the angular

km/hr velocity of rotation of the aircraft
Fig. 2.12 relative to the axis 0Z;, thanks to
which the vector of the total angular
velocity Q ceases to be in agreement with the major inertial axis
0Xy (see Fig. 1.8). The deviation of the vector @ from the axis
0X; leads to the appearance of the moment from the centrifugal
forces, equal to (Jy - Jglwgwe. This moment begins to "turn'" the
aircraft into a yawing motion until it compensates the aerodynamic
moment of the directional stability. In this case the deflection
of the control stick and the creation of a positive angular pitching
velocity wy, lead to the appearance of an angle of side slip of the
same sign as the angular rolling velocity, i.e., with starboard
rolling (w, > 0) the right wing goes ahead (8, > 0), and with port
rolling (wy < 0), the left wing goes ahead (B < 0). Rolling with
recoil of the control stick after coming out of a negative G-force
will lead to the development of side slip with a sign that is op-
posite to that of the angular rolling velocity, i.e., with star-
board rolling (wyp > 0) the left wing goes ahead (B < 0) and vice

versa.

In this stage of describing the dynamics of rolling maneuvers
it follows to introduce a new, previously unconsidering factor,
the presence of excess lateral stability mg in the aircraft. The
lateral stability of the aircraft leads to an angle of side slip,
and in the general case the angle of attack also, beginning to sub-
stantially influence the angular rolling velocity, as a result of
which the motion of the aircraft is significantly complicated.

Roughly speaking, we can define two characteristic types of
rolling maneuvers in an aircraft. In the first case the effect of
lateral stability leads to a decrease in the value of the angular
rolling velocity, i1.e., it is manifested in a seeming decrease in

52



efficiency of the ailerons. The second case is characterized by
directly opposite phenomena, a seeming increase in the efficiency

of the ailerons all the way up to loss in the controllability of

the aircraft by the ailerons, when the aircraft continues its rolling
turn, regardless of the ailerons being in neutral position. Both
types of rolling maneuvers may be accompanied by the development

of large angles of attack and side slip and by large G-forces.

As an example of a rolling maneuver of the first type, let us
look at a simplified physical picture of the motion of an aircraft
with aileron deflection carried out under conditions of flying with
a positive G-force. TFor simplicity we assume that the aircraft
possesses a constant excess lateral stability, i.e., m% = const.

As noted above, in carrying out a rolling maneuver with the original
positive G-force the angles of side slip develop with the same sign
as that of the angular rolling velocity. A side slip of such sign
creates a moment relative to the longitudinal axis 0X;, which im-
pedes development of the angular rolling velocity due to the lateral
stability mg. In fact, from the equation of the equilibrium of
moments relative to the longitudinal axis, the expression for the
steady value of the angular rolling veloclty may be written in the
form

— 1 J— J—
W= ——= [ jaaa-|-mg.g], (2.45)
mxx

From expression (2.45) it follows that for the creation of a posi- /61
tive angular rolling velocity 5& > 0, a positive moment from the
ailerons (Am, = mgaéa > 0) is required and, as noted above, the

side slip developing in such case has a positive sign (B > 0) and
consequently decreases the value of Ex (since EE < 0). From the

view point of the pilot, a seeming decrease in the efficiency of

the alilerons is observed. On the contrary, with deflection of the
alilerons from the conditions of flight with a negative G-force side
slip is developed with an angular rolling velocity that is more
positive. Such a side slip facilitates the increase in rolling
velocity and seems to increase the efficiency of the ailerons. More-
over, such a moment may occur when after deflection of the ailerons
the developing side slip is found to be so large that without using
the ailerons the aircraft maintains its rolling turn. In several
instances resetting of the ailerons may in practice not lead to a
change in the angular rolling velocity. This is an example of the
second type of rolling maneuvers, which has been called by a number
of different designations: autorotation, self-turning, inertial
rotation, etc. Below we shall call it the system of inertial
rotation.
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CHAPTER III

STUDY OF THE MOTION OF AN AIRCRAFT USING THE METHODS OF THE
QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS

11. Using the Methods of the Qualitative Theory of Differential
Equations for Analyzing the Spatial Motion of an Aircraft

At the present time much scientific and technical literature
has been published on the dynamics of aircraft, however practically
all this literature has been devoted to a study of the motion of an
aircraft with small disturbances, when linearization of the equa-
tions of motion is possible. In this respect the basic mathematical
tool, on the basis of which in these papers the dynamics of an air-
craft have been analyzed, is the theory_ of linear differential
equations, the method of Laplace transforms, frequency methods,
etc. To study the dynamics of aircraft in a general formulation,
i.e., when large disturbances are taken into account and the non-
linear equations of motion are analyzed, these methods become in-
applicable. At the present time there are no analytical methods
which will permit finding a solution to the nonlinear equations of
motion of an aircraft. To describe the basic properties of solving
these equations and determining their characteristics, in the pres-
ent paper we shall use the methods of the qualitative theory of
differential equations. However, we must note that the methods of
the qualitative theory of differential equations are used mainly
for analyzing second order equations and are significantly less
developed for differential equations of a higher order. 1In the
present paper an attempt is made to use several of the existing
results, mainly for the purpose of classifying the possible types
of spatial motions of an aircraft. Included in these results are,
in first order, the general representations of the structure of the
solutions to nonlinear differential equations, the concept of singu-
lar points, separatrix surfaces, etc. All the required information
and formulations within the framework of the mathematical apparatus
used in the paper are given in the present paragraph. To obtain
more detailed information, the reader is referred to the special

literature [1] - [8].

In the sections below we derive formulas for finding the
parameters of motion of an aircraft at the singular points of the
equations of motion, corresponding to the given deflection of the
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controls (8., 8p, 85), and the aperiodic stability of such motions

is determined. These formulas and conditions of stability of motion
are used in practically all the remaining sections of the book in
analyzing the controlled motions of an aircraft. On the basis of
analyzing the dependence of the amount of deflection of the ailerons,
required for carrying out the spatial maneuver, on the parameters

of the longitudinal control, basic types of rolling maneuvers ap-
pear which differ in the reaction of the aircraft to the deflection
of the ailerons, and the nature of the motion in the vicinity of

the singular points is determined.

Let us assume as above that for the given time of motion of the
aircraft, the speed and height of flight of the aircraft is prac-
tically constant and the influence of the forces of gravity can be
neglected. Using such assumptions we can analyze Equations (1.28)
the right hand parts of which are clearly independent of time.

Such systems of equations belong to the so-called "autonomous sys-
tems'" (sometimes called dynamic systems), for which the qualitative
theory of differential equations has been mainly developed.

In general form the equations of motion of an aircraft can be
written in the following manner:

X=X (4. . LX)
i=1, . ...n. (3.1)

The variables (x1,...Zy) are analyzed as coordinates of the point
of n-dimensional phase space and may represent the values of the
angular velocities, the angles of attack and side slip of the air-
craft, etec. The methods of the qualitative theory of differential
equations can be simply represented in the following manner. Since
in the right hand parts of Ffquations (3.1) the time does not appear
in explicit form, then it can always be excluded from the system of
differential equations and in the same manner they can be reduced
by an order under the condition that not all the right hand parts
of the equations vanish. As a result of such an operation, differ-
ential equations are obtained which do not contain time, the inte-
grals of which determine the relationship between the phase coordi-
nates (x1,...%54), that are satisfied throughout the time of the
motion. The pictures of the motion obtained in such case on the
phase plane for the equations of second order, or in phase space if
the order of the equations is higher than the second, clearly
describe the motion; in particular they indicate the regions of
stable and unstable motion, periodic motions, etec. The practical
fulfillment of plotting the trajectory of the motion in phase space /64
described above in the majority of cases is more complicated than
finding solutions to the original equations in general form. How-
ever, for equations of second order, approximate methods do exist
for plotting such trajectories, and have been described in detail
in the literature [1] - [3]. We shall not pause to analyze these,
since their use for equations higher than second order is either
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quite complex or in general impossible. Additional problems in
plotting phase trajectories for equations of a higher order are
associated with the practical impossibility of a graphic representa-
tion of space with order higher than the third, in connection with
which a slight loss appears in the clarity of the results.

The basic representations of the
character of the phase trajectories can
be obtained if we look at the right hand
parts of the system of Equations (3.1),
as the components of the vector F(f,...
fn), which leave the point (x1,...%x,) in

Z;

(3.1) can be set in correspondence with

|
' — a certain vector field. In this vector
! z field the vector F determines the phase
e velocity, since its components are the
————mp y values of the derivatives of the coordi-
Iy / nates. At all points of space the phase
trajectories are directed tangent to the
Fig. 3.1. vector F. On this are based several
approximate methods of plotting the phase
trajectories. In fact, starting at a certain point of phase space
(x{,...xé),_using Equations (3.1) we can compute the components of
the vector F and it is shifted a slight distance in the direction
of the vector. Sequentially repeating this procedure in sufficient-
ly small "steps" of change in the parameters (x1,...%y), Wwe can

plot the phase trajectory with the necessary accuracy.

Both for problems of stability and for the overall gualitative
analysis of differential equations, considerable attention is given
to the study of singular points or points of rest o{ the system of
Egquations (3.1). These are the points (xl(o) 9)), for which
all right hand parts of the equations vanish, i.e.,

2o v oLy

X (%@, . .. x)=0;

i=1, . . .n. (3.2)

The type of motion in the vicinity of the singular points can
be obtained by finding the solution to the linearized equations
relative to the parameters of motion at this point. The motion in
the vicinity of the singular points for the system of equations of
second order have been studied in detail so that it is impossible
to speak of equations of a higher order. Before we proceed to a
description of the properties of the solutions in the vicinity of
the singular points in the m-dimensional case, let us narrow down
the class of systems to be analyzed, i.e., let us assume that the
mechanical problems which we are studying belong to the so-called
"rough systems". The concept of rough systems [11] includes the
following. In order for the analyzed dynamic model of motion to be
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well reflected in the properties of the real physical process, it
is necessary that it be immune to small changes in the parameters.
First of all, in dynamic systems which represent the physical prob-
lems, with small changes in the parameters of the right hand parts
of the equations, the gualitative structure of the separation into
trajectories in phase space must remain constant. The systems, for
which this requirement is satisfied, are called rough systems [11].
It is obvious that in rough systems all groups of roots of the
characteristic equation are possible with the exception of the
purely imaginary and idential (multiple) roots.

In fact, when the roots are purely imaginary, which corresponds
to an undamped oscillational motion, in the general case of a suf-
ficiently small change in the parameters, in order for the real part
to appear in the roots, the oscillations become either damped or
divergent.

In determining the dependence of the type of singular points
on the parameters of the system of equations of motion, singular
points can be encountered which do not satisfy the condition of a
rough system. The motion of an aircraft in the vicinity of the
neonrough singular points of practical interest is not presented
since the probability of such a combination of parameters of an
aircraft is in fact =zero.

The book by Andronov, Vitt and Khaikin [11] - cites the classi-
fication of possible types of singular points in rough systems for
equations of second order, the bases of which are the saddle point
and the stable and unstable focal points. By expanding these con-
cepts to the equations of n-th order, we can classify the singular
points according to the type of curve of the characteristic equation
obtained in linearizing the original equations of motion relative
to the values of the parameters of motion at the singular point.

Let us introduce, in analogy with Reference [11], the following
definitions of the singular points as a functicon of the roots of
the characteristic equation of the linearized system of equations.

1. All Real Roots of the Characteristic Equation are Negative.

(a) Stable spatial focus. The singular point will be a stable
spatial focus if there are complex-conjugate roots with a negative
real part.

(b) Unstable spatial focus. The singular point will be an
unstable spatial focus if there is even one pair of complex-conjugate

roots with a positive real part.

(¢) Stable spatial point. The singular point will be a stable /686
point if all roots are real and negative.
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2. Even One Positive Real Root of the Characteristic
Equation Exists.

In this case the singular points, regardless of the type of
other roots, will be termed a spatial saddle point.

Stable
focus

Unstable Stable
x focus x center

g 2
a .
c
Fig. 3.2

In cases (a) and (b) the phase curves come as near as desired
to the origin when ¢ - ® (stable singular points). The motion in
the vicinity of the singular points in cases (a),(b) and (c) has
the character of damped or divergent oscillations. Figure 3.2
shows examples of phase trajectories for the equation of second
order in these cases. The arrows indicate the direction of motion

of the figurative point for the phase trajectory with increase in
time.

A characteristic of the motion in the vicinity of the singular
point of the "spatial saddle" type is the fact that almost all
phase trajectories approach at a certain minimal distance to the
singular point when 0 < ¢ < oo and does not reach it, i.e., all
integral curves are saddle points. The exception involves phase
trajectories which lie on certain singular surfaces which may either
"enter" the singular point or "leave'™ it. The diagram of the phase
motion in the vicinity of the saddle singular point for the eguation
of second order is shown on Figure 3.3,

Let us look at this latter case in greater detail. As noted
above, the solution for any parameter of motion in the vicinity of
the singular point for a rough system [11] can be found from the /67

system of uniform linear differential equations and are written in
the form

xp= ettt Ayetat4e L
i=1, . . .n.

(3.3)

Let us determine the method of finding the equations of the
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separatrix surface. The basic property of the separatrix surface

is that the solutions for the phase coordinates which lie on this
surface are independent of all the real roots of the characteristic
equation. Because of this, stable solutions may exist for the
separatrix surface in particular although in all the remaining space
they are aperiodically unstable. This will be so in the case when
the solution for the phase trajectories on the separatrix surface
does not depend on the positive real root, leading in the entire
remaining phase space to aperiodic instability of motion.

Let A3 be a real root not having
a multiple. In order that the solution
for all the parameters of motion x; be
independent of this root it is neces-
sary and sufficient that all coeffi-
cients A1; when exp in the power i3t
is equal to zero. Let us show that
for all the coefficients 431; to vanish,
it is usually sufficient for the co-
efficient A;7 to vanish in the solution
of even one of the variables (see also
£18]1). 1In fact let us look at a system
Fig. 3.3 of linear equations that describe the
motion of an aircraft in the vicinity
of the singular point:

"Saddle"

P . [ - b

G=apXtaped . Fa |

Xo= AnXy-FQnXo+ . . . A aa, Xy ! (3.4)
- _ ' O . | -

Np =0, + an')f\’l R TRl

Let there be known the real root A; which is the solution to
the characteristic equation. If the solution x; = 4] exp (A1¢) is
placed into the system of Equations (3.2), the characteristic
determinant then vanishes, thus indicating that one of the equations
of System (3.4) is a consequence of the other equations. If we
exclude one of the equations, for example, the first of the system 68
of Equations (3.4) we find a system of linear algebraic equations
for determining the components of the solutions X2 s...2, for the
term exp Xi1?t in the decision function x;. Since the root A; does
not have a multiple then we can always exclude one equation from the
System (3.4) in order for the remaining equations to have the
characteristic determinant not equal to zero, and consequently be-
cause of the linearity of the equations, there would exist the
equation

5= AV @i (@, W) €Mt (3.5)
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i.e., the solution wguld be represented in the form of the product
of the coefficient A] times a constant which depends on the number
of the parameter of motion J, in which it is computed also from
the parameters of the characteristic equation.

The value of 4] is a function of the injitial conditions. Since
the equations are linear and uniform, then A4; 1s written in the form

n
Ay= 3 0%, (0). (3.6)
i=1
As follows from Expression (3.5) in that case when A? = 0, all
coefficients vanish with the respective terms exp (Ai1t). Therefore,

if in the solution for any variable the coefficient for the term
exp (A1%) vanishes, then the respective coefficients for this term
in the solutions for the other variables will also vanish. The ex-
ception to this will be the degenerate cases when the coefficient
for exp (X1¢t) is identically equal to zero in the solutions for
several variables, for example, 1f the respective value g; = 0.

From expression (3.6) it follows that the region of the initial
values, for which the term exp (A%xt) is absent in the solution, is
the n-dimensional plane, which passes through the singular poinB.
The equation of this plane can be found if the expression for 4,
is equated to zero [see Expression (3.6)]:

Zbixizp- (3.7)

i=1

Because of the uniqueness of the solution to the system of
differential Equations (3.4) all integral curves, having even ocne
point other than the singular point in common with the points of
the plane (3.7), lie in 1t completely. Hence it follows that none
of the integral curves intersect this plane, i.e., the plane is a
separatrix surface, which separates the phase space into regiomns.
The number of separatrix surfaces, which pass through the singular
point, 1s equal to the number of real roots. If the characteristic
equation of the system has only one positive real root, then the /69
integral curves in the entire phase space, with the exception of o
the integral curves lying on the separatrix surface, approach a
certain minimal distance to the singular point, at which position
they remain (see Fig. 3.3). An exception is the integral curves
which lie on the separatrix surface and approach as close as may be
desired to the singular point if the real parts of all the remaining
roots are negative. If the characteristic equation has several
separatrix planes, then each intersection of them is an (n - 1)
-dimensional surface (plane) of first order.
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With distance from the singular point, the accuracy of repre-
senting the equations of motion as linear deteriorates and the
separatrix n-dimensional planes change into surfaces of a more
complex type, separating the space into several sub-spaces, in each
of which may appear different types of integral curves.

The basic elements which determine the qualitative picture of
the distribution of integral curves in phase space for rough dynamic
systems, are the singular points and the separatrix surfaces. If
the position and types of the singular points and separatrix surfaces
are known (as noted above, the separatrix surfaces may intersect
at the singular points of center and saddle type) then the qualita-
tive picture of the distribution of integral curves in the phase
space can be shown in general outline and the picture of the motion
can be determined as a function of the initial conditions.

Change in the parameters of the equations of motion (and in
studying the dynamics of an aircraft for constant conditions of
flight the values of the control deflections 8o, 85, Spr) will lead
to a change in the integral curves. In such case the overall form
of the integral curves may undergo only slight gquantitative changes,
i.e., the topological structure of separating the phase space (the
number and character of the singular points and the separatrix
surfaces) may not change. Only for certain singular so-called "bi-
furcation" values of the parameters do there exist qualitative
changes in the phase picture of the distribution of integral curves.
This may be expressed in the change in the type of singular points
(for example, conversion of a stable-focus type singular point into
a saddle point), in the change in the number of singular points,
etc. It is obvious that such values of the parameters of control
are of special interest, since they determine the boundaries at
which a qualitative change in the process of aircraft motion occcurs,
for example, regions of unstable motion, etc., appear.

In further studies we shall determine the dependence of the
type of singular points on the parameters of aircraft motion, in
first order, on the values of the control deflections &5 and §p, in
particular, we shall seek the bifurcation values of these parameters.

12. Determining the Parameters of Controlled Motion of an Aircraft
at the Singular Points. Formulas for the Static Solutions.

Let us proceed to an analysis of the qualitative character- 70
istics of spatial motion of an aircraft by taking into account the
limiting assumptions introduced above. The basic characteristics
in the dynamics of an aircraft which can not be determined from the
simplified linearized equations, appear in those cases when the
motion of an aircraft is accompanied by strong rolling. It should
be noted that the necessity for analyzing the total equations of
motion arises not only in investigating rolling maneuvers which are
accomplished by deflection of the ailerons. With the large values
of excess lateral stability that are characteristic of modern air-
craft, significant angular rolling velocities may develop as a
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reaction to the deflection of the rudder and even when the aircraft
enters into a wind blast.

The purpose of the investigations includes finding the relation-

ship between the values of the angles of control deflection of an
aircraft (85, Sas §,) and those changes in the parameters of its
motion (the angles of attack and side slip_a, B and the projections

of the vector of angular velocity wg, Wy wg) to which these deflec-
tions 1lead.

Isolated longitudinal and lateral motion of an aircraft is
characterized by the fact that with deflection of the elevator and
rudder at certalin constant angles (859, S6pp) the aircraft changes
respectively the angle of attack and side slip to a certain constant
value and begins to turn_in flight relative to inertial space at a
given angular velocity (wz, Wy ) . In those cases when the maneuver
involves a short segment of time or is carried out with large G-
forces, the influence of gravity on the motion relative to the
center of mass can be ignored and the limiting values of the angular
velocities of the aircraft may be assumed to be constant values.
Such steady limiting conditions of flight correspond to the singular
points of the equations of motion of an aircraft with the gravita-
tional terms dropped. Because of such a relationship between the
deflection of the contrcls and the parameters of motion, investiga-
tion of the dynamics of an aircraft when the maneuver is carried
out by deflection of the controls in various combinations at certain
constant angles, can be accomplished most completely and clearly by
using the methods and terminology of the qualitative theory of
differential equations.

When the problem of the relationship between the deflections
of the controls and the changes in the parameters of motion was
solved on the assumption of smallness of such changes, and the
dynamics of the aircraft were described by a system of linear dif-
ferential equations such as (1.34) and (1.35), the solution was
rather simple. The analytical methods of such motions are discussed

in detail in a number of papers on the dynamics of an aircraft ({181,

{197, etc.). The results of these investigations (for those cases
when the influence of the gravitational terms can be ignored) are

reduced to three basic points:

1. The reaction of an aircraft to deflection of the elevator
(6g) does not depend on deflections of the ailerons and rudder.
Analogously, the reaction of an aircraft to deflection of the ailer-
ons and the rudder does not depend on deflections of the elevator.
In other words, the longitudinal and lateral controlled motions of
an aircraft are independent when the changes in the parameters of

motion are small.

2. The quantities of the steady values of the angles of attack
and side slip, and also the projections onto the body axes of the
vector of angular velocity (uwg, Wy » wz) are unique functions of the
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values of deflections of the controls, i.e., the steady values of
all the parameters of motion are independent of the initial condi-
tions and the sequence of deflections of the controls and are only
possible with a given deflection of the controls.

3. The dependence of the parameters of the disturbed motion
of an aircraft on the values of deflections of the controls in the
case of the linear aerodynamic characteristics is a linear one,
for example, a change by two times of the angle of deflection of the
rudder relative to the balanced position, corresponding to hori-
zontal flight, leads to a change in the value of the angular veloc-
ity wgz also by two times.

In analyzing the spatial motions accompanied by strong rolling,
strictly speaking, none of these conclusions is retained. In first
order this involves maneuvers with which simultaneous strong deflec-
tions of the ailerons and rudder are carried out. Below it will
be shown that changes in all the parameters of motion of an aircraft
with such maneuvers are interrelated. Moreover the values of the
limiting steady values of the angles of attack and side slip and
the projections of the vector of angular velocity (wg, Wy 5 wy) are
not unique functions of deflections of the controls. Mathematically
this means that for each combination of deflections of the controls
there are several singular points of the system of equations of
motion. In all these cases the linear character of the dependence
of angular rolling velocity on the value of deflection of the
ailerons is disrupted.

We must note that the conclusions made above were obtained
from linearized equations and in the engineering sense are valid
for small deflections of the controls and naturally follow from
the total equations of motion. In fact, regardless of the fact
that the system of equations of motion of an aircraft has several
singular points for each combination of the control deflections,
small deflections in the controls and small external disturbances
can not "carry off" the parameters of motion of an aircraft suf-
ficiently far from the region of "attraction" of the basic singular
point, which is determined quite precisely by using simplified
linearized equations.

In the problems of studying the motions described by nonlinear
equations, we isolate several basic questions, which should be
examined sequentially to simplify the problem.

1. Finding all possible combinations of steady values of the
parameters of motion, i.e., finding the entire complex of singular
points corresponding to given values of the disturbances, deflec-
tions of controls, etc.

2. Investigating the type of motion in the vicinity of each
singular point and its stability (motion "in the small").
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3. Investigating the motion in the entire phase space (motion
"in the large).

In the present paragraph let us look at the first part of the
overall problem and determine the dependence of the values of the
parameters of motion at the singular points on the values of deflec-
tions of the controls, i.e., the "trajectory of the singular points".
Knowledge of these functions permits, for any combination of deflec-
tions of the controls, determining all singular points, i.e., all
possible values of the "points of rest" - the "static solutions".

It should be noted that there exists a theoretical difference be-
tween the steady motion of an aircraft and the parameters of motion
representing the singular points. This distinction consists in the
singular points describing all possible "points of rest" of the
system of differential equations of motion, whereas the steady
systems of motion of an aircraft exist only for stable singular
points toward which the phase trajectory approaches in the 1limit.

Let us proceed to finding the values of the parameters of
motion at the singular points. For this purpose let us first re-
write the system of Equations (1.28) in a form which is convenient

for analysis:
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To obtain values of the variables at the singular points in
correspondence with the definition (see Section 11), let us equate
the right hand parts of Equations (3.8) to zero. Equating the

right hand parts of Equations (3.8) to zero indicates that all ¢

derivatives of the parameters of motion are equated to zero and
consequently corresponds to the extreme motion or "static'" solution,
which generally speaking may also not be stable. To find the
"coordinates" of the singular points in phase space we must find

all solutions for the parameters of motion which satisfy the non-
linear system of algebraic equations obtained. 1In those cases when
the aerodynamic coefficients are linear functions of their own argu-
ments, the system of algebraic equations may be easily solved in
parametric form, if we take the value of the angular rolling
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velocity B& for the parameter, since all nonlinear terms of the
equations are functions only of this parameter. In the general
case of nonlinear dependences of the aerodynamic coefficients on
the parameters of aircraft motion, the solution to the obtained

system of nonlinear algebraic equations is additionally complicated.

In this case it can be solved by various iteration methods.

The system of algebraic equations obtained by equating the
derivatives to zero, in the general case is not uniform and has the
following form:
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If we assume E& to be a parameter whose values can be given
arbitrarily, then from expressions (3.9) it is clear that in the
right hand parts of the system of algebraic equations we find terms
which depend not only on the values of the control deflections (&,,
§e, 6p) relative to their original position, corresponding to
trim in steady horizontal flight without rolling, but also on the
angle between the major inertial axis and the vector of flying
speed of the aircraft (ap) at the beginning of the maneuver and on
the size of the angular rolling velocity w,. With a fixed value of
wye the system of equations becomes linear and each combination of
parameters in the right hand sides of the system of Equations (3.9)
is represented by a unique complex of parameters of motion of the
aircraft at the singular point. With a continuous change in the
value of any of the parameters of control, in the right hand parts
of the equations we find the "trajectory'" of the coordinates of the
singular points as a function of the respective parameter.

From the system of algebraic Equations (3.9) it follows that
the parameters of motion at the singular points depend linearly on
the size of the deflections of the elevator and rudder (8., §,),
however the coefficient of proportionality is determined by the
size of the angular rolling velocity Eé. Such a linear dependence
permits representing the values of the parameters of motion at the
singular points which will be denoted by the subscript "st" (static
solution), in the following form:
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(3.10)

A%Y are tabulated in

Table 2). The formulas shown in Table 2 were obtained by solving

the non-uniform system of algebraic Equations (3.9).
for the Z-th variable, as we know from linear algebra,

from the formula

X

1

where |A0| is the characteristic determinant of the system of

14
Ay 7

The solution
is found

(3.11)

equations, and IAifI is the determinant composed of those elements
in which the Z-th column is substituted by the column of right hand

parts.

From the method itself of obtaining Equations (3.9), when the

derivatives are equated to zero,

it follows that the equation

[Ao] = Ao,

is satisfied, where the coefficient Ag is the free term of the

(3.12)

characteristic Equation (2.10), obtained in analyzing the stability

of the steady rolling turn of an aircraft (B& = const).

The first thing to be noted in Equation (3.10) is that of the
property of superposition of the solutions obtained for the various
disturbances included in the right hand sides of Equations (3.9).
This property is due to the algebraic Equations (3.9) being linear
in the analyzed formulation for the linear aerodynamic coefficients
when Bé = const, and consequently any solution can be represented
in the form of a sum of the solutions as a function of each individual
disturbance. In the general case of nonlinear aerodynamic coeffi-
cients [for example, for a dependence of the type m%(a), mB(a),

etc.], this property will not be satisfied.

Let us note however

that all nonlinear dependences of the aerodynamic coefficients in-
cluded in the equation of moments relative to the longitudinal axis
(0X1) obviously do not influence formulas (3.10) since only the

66

/75




TABLE 2

&3 wys s
— ® - 8 - B
¢: - cz — 1 ¢ _— -, -
= | — 2. Y ol - 8 'z —_— —w, =g 3
24, ( m,%, 9 m, poy AB 9 +umy, msz) 24, 2 Pwa+P‘”xm‘.1bmy) LN
g - ) B a2
—1 £ —w» g —p) N €t ¢
| —pn—=—"m Y t-pdoy B +u2m ——’ 2 p__ Y ~%a
AO ( * 2 v o * e Y AQ x‘HP’ wxmM P.wa 2 92 m, '5e
box dw AB PP P 2 Aua b Bog —o, —g —2 p—a —g =
Ao — pdoy, AB —poym, MmNy p2Aw,m, Y sz m, + P'?“’x&mzb‘-" pm,, . m;b %t ot
—3 ——w,—w, — - _ —o, — — —p -
240 (—‘f‘s“’x AB—pogm, ¥ m 3 —p2A "’xmx) 24, m.3 ’"2+ #ﬂibmzb+pm5m:b> PSR W
- B — oP
= - 1 _ 4. ¢ o e?
= | pfo_miz+p2d0 ——z~) ——pt 23 z -z —in
Ao (p Mz THIASE g Ao™zb g TR Ml T BT my Y
‘Tx(._.—:.;z '_CE> —‘;x_— Cg g—a, (Y -
— 2w, m + 2Awy, — ~—m“’z L 9 —w, 3 z —w
plog Moh T x 9 Ay ?b 2 pthIan—i-y.mz 2 mllx
— Ly
Ag=p? —— Mgy — o m,? |~
P-
o
Jy—7
P=2’£—; AV x
st Jz
{ Jg—1J
“’x—""xﬁ;r B = 7 2

67




value Zé is included in it and the parameters from the equation of
moments relative to the axis 0X; are not.

Each of the coefficients, A%, AY3, etc., represent the ratio
of a certain polynomial in powers of wy to the free term of the
characteristic equation Ap. The coefficient Ay (see Section 8) can
vanish at the boundaries of the regions of stability of aircraft
motion during rotation when wgz = const and there are usually two
values of the angular rolling velocity. From the formulas in Table
2 it follows that with these values of the angular rolling velocity
all the functions A%, AWz, AB, AYY grow without 1imit, and with
passage through the critical angular rolling velocity undergo
disruption and change sign.

The physical sense of the increase in the coefficients of
proportionality, A%, AB, etc., with approach to the critical veloc-

ity may be explained using the following simple arguments. A low-
ering in the value Ag(w,) means a decrease in the degree of stability
of motion of the aircraft. Since the value of the disturbance is

retained @ constant control deflection), then the reaction of the
aircraft to this disturbance with lowering of the degree of stability
increases and with critical rolling velocities, when the aircraft

no longer possesgsses stability, this disturbance leads to an un-
limited growth in all the parameters of motion of the aircraft.

The character of the dependence of the basic terms of the functions
A% AWZ, AB . AWY on the angular rolling velocity is illustrated on
Figures 3.4, 3.5 and 3.6.

For a full determination of the dependence of the parameters
of motion of an aircraft at the singular points on the deflections
of all controls (65, 8¢, 8,) we must exclude the value of the
angular rolling velocity by using the respective dependence of wx
on the amount of control deflection. However such a method involves
awkward computations, leads to poor results and is thus not rational.
It is much more convenient to retain the dependence on 5& of the
parameters of motion of an aircraft after determining them by an
equation which permits finding the value of the required aileron
deflection, corresponding to the motion of an aircraft with given
values of wg, Ggg, Wzggs Bsg and Wyss - The value of the aileron
deflection required for guaranteelng motion of an aircraft with an
angular rolling velocity w, is found from the equation of equilibrium
of moments relative to the longitudinal axis in steady motion, which
can be written in the following approximate form: ¢

Am,:wn?ﬂiz——mip-—nzxuu+4%@5§%8g (3.13)

Since all the parameters of motion included in Equation (3.13) /
are known functions of the angular rolling velocity wy, and of the
values of the control deflections, then the value Amg, can be easily

found.
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Figures 3.7 and 3.8 show examples of the dependences of the
steady values of the basic parameters of motion of an aircraft on
the angular rolling velocity w,. Graphs of static solutions for
a rolling maneuver, carried out from horizontal flight, are plotted
on Figure 3.7 and those for a rolling maneuver carried out from the /77
conditions of flight with negative G-force, Aﬁy = Aﬁg = 0, are T
plotted on Figure 3.8.

It should be noted that the curves of the static solutions are
plotted only for positive values of the angular rolling velocity
(Bﬁ > 0). TFrom the formulas in Table 2 it follows that all the
functions AR, 4wy are odd_and the functions A% and 4“3 are even for
wx, i.e., the curves for wg < 0 in the first case are antisymmetric
to the curves for wgy > 0 and may be obtained as an inverted mirror
reflection of the curves for wg > 0, and in the second case - as a
mirror reflection.

It is clear from Figures 3.7 and 3.8 that the obtained depend-
ences on B& of the parameters of motion of an aircraft have singular-
ities when '"critical" values of the angular rolling velocities /78
exist. At these points all static solutions take infinitely larger
values, whence it follows that the required aileron deflections for
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creating such angular rolling velocities are also infinitely
larger if we take into account function (3.13) for an aircraft with
a non-zero lateral stability, i.e., when mB # 0 in particular.

Using dependences of the type shown on Figures 3.7 and 3.8 we
can find the values of the parameters of motion of an aircraft at
the singular points corresponding to a given complex of values
characterizing the control of an aircraft (85, 8¢, ag).

The procedure of finding the variables at the singular points

includes the following: Based on_the values of Amz, Amy, ap, etc.,
we plot the dependences uss(wx) wggs (wz), Bgs(wz), wyss(wx) and
finally AMmg(wg). Then according to the value of the aileron de-

flection (8;), for which we must determine the singular points,
using the dependence Amx(wx), we can find the values w,, which are
values of the angular rollln§ velocity as well and correspond to

the moment of the ailerons m, @ 84. Using the values of w, thus
found, we can find the remalnlng parameters of motion of an air-
craft at the respective singular points. Let us look,as an example,
at all possible singular points -~ the static systems of motion of

an aircraft ~ under the conditions of horizontal flight with no

deflection of the controls:
H
- (3.14)

The parameters of motion of an aircraft at the singular points
for these conditions of flight can be determined by taking into
account the sign of E&, using Figure 3.7. It 1is easy to verify
that there are five singular points, the parameters of motion in
which are tabulated on Table 3.

o TABLE 3 B
No.
Parameters 1 2 3 L 5
W 0 0.0306 0.0438 |[-0.0306| -0.0u438
dss 0 0.15 0.9 0.15 0.9
Wzss 0 -0.04 -0.075 [-0.0%4 -0.075
Bss 0 -0.14 -0.18 0.14 0.18
Wyss 0 -0.004 |-0.016 0.004 0.016

Let us recall that from the linear theory of aircraft motion
we could obtain only one singular point - No. 1. However not all
the obtained singular points correspond to the stable motion of an
aircraft. In particular in the example studied the only singular
point is Point No. 1 which is determined from linear theory. In
the general case, several singular points can be found which corre-
spond to stable motion; such systems of controlled motion of an
aircraft will be analyzed in detail below.
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We can isolate three basic ranges of values of the angular
rolling velocity w,, for each of which the dynamic characteristics
of an aircraft have their own singularities. With motion at low

angular rolling velocities, when the condition

ol min (i, ), (3.15)

is satisfied [the sign min (wq, EB) denotes the smaller of the two
values], the motion of the aircraft is near to that described by
the linear differential equations and is analyzed in the majority

of papers on dynamics of an aircraft. The second limiting case is
the rapid rotation of an aircraft relative to the longitudinal axis
with a high angular rolling velocity. Such a motion in its proper-

ties is near the rotation of a solid on which the aerodynamic
moments do not act since with large values of w, the basic role is
played by the gyroscopic moments. The angular rolling velocity is
assumed high if it satisfies the condition

| o, [ S>max(e., w3), (3.16)

where the sign max (Ea, EB) denotes the greater of the two values.
This case of aircraft motion will be analyzed in detail in Section
1l6.

The motion of an aircraft has the most complex characteristics
with values of the angular rolling velocities near the critical
velocities when the inertial and aerodynamic moments are similar in
value. For maneuvering aircraft this range of values in the angular
rolling velocity 1is of the greatest interest.

13. Possible Types of Dependences of the Value of the Moment on
the Ailerons Required for Carrying Out a Rolling Maneuver

To obtain some idea as to the qualitative picture of spatial
motion of an aircraft, in first order it is necessary to determine
the number of type of singular points corresponding to the maneuver
being analyzed.

Let us proceed to an investigation of the basic properties and
characteristics of the phase pictures corresponding to motion of an
aircraft with simultaneous control of rolling and pitching (the
most important case in practice), in which the nonlinear character
of the motion appears. During rolling maneuvers, control of yawing
using the rudder (Gr) is of least interest and will be studiled be-
low rather briefly.

The basic characteristic which determines the number of singu-

lar points at given values of the control deflections (see the
example examined above), is the function Amy = f(wg, Se+ag). In
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fact, using this function for the known values 8o, ap and Ga’ we can
find all the values of the angular rolling velocity w, at the singu-
lar points which permit determining the remaining parameters of
motion at these singular points as well, based on formulas (3.10).
Moreover, as will be shown in the next section, the type of the
dependence f(wgp, 8o, 0p) permits in any number of cases evaluating
more precisely the stability of motion in the vicinity of the
singular points found, and discovering the singular points with a
prior unstable motion iIn their vicinity. Taking into account the
comments made above, we can study which types of the dependences

Mgy = flug, o> @p) are possible. The types of functions Flug, S
dg) found in such an analysis will be used as the basis of studies
of possible types of spatial motion of an aircraft under arbitrary 83
initial conditions and various combinations of control deflections
in longitudinal and lateral motions. Let us introduce first instead
of the values of the elevator deflection A8, an equivalent value

Aap which represents the increase in the angle of attack in isolated
longitudinal motion that is determined by the approximation re-
lationship

‘Qe_&;'
Nap — L2 (3.17)

-3
mz

Taking into account Equation (3.17), the maneuvers are char-
acterized by the size of the aileron deflection and by the two compo-
nents of the total angle of attack ag and Aa. By definition, the
angle of attack ap is the angle between the vector of the flying
speed (when B = 0) and the major inertial axis of the aircraft 0X;
during horizontal flight, i.e., when wgg = 0. The angle Aa is equal
to the increase in the angle of attack of the aircraft when the
elevator is deflected by a value AS, relative to the trim position
in horizontal flight. The appearance of the angle Aa is accompanied
by the development of an angular pitching velocity wzg # 0 which
from the very beginning of the maneuver "leads" the vector of the
total angular velocity of the aircraft away from the axis 0X;. This
produces a slight difference in the influence of the angles ag and
Ao on the motion of the aircraft. Let us recall that the introduction
into the equations of motion of the angle of attack ag is associated
with the necessity of taking into account the influence of gravity
on the trim of an aircraft.

Since the projections of the gravitational forces onto the
body axes 0Y1Z;, when an aircraft rolls in a turn, become almost
periodic functions of time and condition of flight when oy with wy=
0 are disrupted, such a division of angles, strictly speaking, is
substantial only in evaluating the beginning of the rolling maneuver.
In analyzing lengthy rolling maneuvers we can approximately assume
the angles ag and Aoy to be equivalent. Somewhat later we shall
look at this problem in greater detail.
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Let us proceed to an anlysis of the possible types of the
dependence Amgp(wy,, ag, Aap). The value of the rolling moment re-
quired for trim of the aircraft during rotation at an angular veloc-
ity wyp is determined from the algebraic relationship obtained by
equating the derivative wgxe to zero:

A}Ix:?n'&_a.a :——;E;’«‘L—)A—EI3 *E‘Ci“:)zsé‘”y ss

£ 4a X 'Ss (3.18)

In Equation (3.18) for simplification of computation only the
basic terms are retained, in particular the term mgywyss, etc. is
omitted. As computations show the term C““Zss'wyss eXerts an in-
fluence on the character of the change in the function Amg(wy, ap,
Aap) only in the immediate vicinity of the critical angular rolling
velocities where this term becomes determinant. With angular rolling
velocities not very close to the critical, its influence is not sub-
stantial and in gualitative evaluations may not be taken into ac-
count. Due to this fact the problem of investigating the dependence
Amp(wy, @g», Aap) can be divided into two parts: investigation at
angular rolling velocities (wg) different from the critical, and
investigation at values of w, in the immediate vicinity of the
critical rolling velocity.

Let us set into relationship (3.18) the product of the angular
velocities equal to zero. Such a simplification will permit clari-
fying the basic laws governing the change in the function Aﬁé(wx,
ag, Aap), which determine the controlled motion of an aircraft.

Let us set into Equation (3.18) an expression for B,4, which
is determined by using Equation (3.10) and Table 2.

oy ul ’1,1"('\ o *

. ; o
_ o . o, TS
Am = ___1 : :, mi , /nzbgab(b s ,;,21/)_;_
g BE - 2
- ) (3.19)
/ CTI m®z . -~ . . (;";‘/ }
:agk’ {bn@yﬂnggmﬂ+gAHmi_- |

2 2 )

If we make the necessary conversions and group the terms by
identical powers of wg, we can reduce formula (3.19) to a form that
is convenient for analysis.

_ %, p— _
A;;;r:._‘_*“’x!;_"-r_.cl(u)x). (3.20)
0
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In Equation (3.20) the following definitions are used:

C,(5)= Dt + DD,

(3.21)
where
D2'=ABP'29
_ | am oSyt
Dy=\mgyA-~1570 | Bo A\ m) — =5 | Apt-
f ¢ =\ m® p
-+ —A;—ng B—Q'——m!/ —HLTAB——GO,
" ll (3.22)
G o} iyt
Po=\mapt =5, ")\~ )~

mh _ . = = ¢t m,?
——=m2| L BAay—m ¥ - Aoy —m ¥ oy — y_2b
o Zemz b

Since the parameters of control in the longitudinal plane (ay
and Aap) do not influence the function 4p(wy,), to determine the de-
pendence Amgp(wy, ap, Aap) it is necessary and sufficient to investi-
gate the function (;(wg,), which stands in the numerator. _From
formula (3.21) it follows that the function (3 (wg,) is an w% parabola
and consequently 1s symmetric relative to the axis wgp = 0. When
laxl - o0, regardless of the parameters of control, the quantity
Cy > o . From this result it follows that the type of parabola
Cl(wé) can be fully determined by the values of the zeros since the
direction of its curvature is known.

Let us proceed to a more detailed analysis of the properties of
the_function Cl(wi). Let us determine the possible types of curves
Cl(w%) and the functions Amg(w,, ap, Aab) which correspond to them.
Let us look first of all at the behavior of the function Cl(w%) in
the vicinity of the point wy = 0. Two cases are possible: (;(0)
> 0 and €1(0) < 0. In satisfying the condition

¢

C,(0)>0 (3.23)

the function 01(6@) may have either two positive roots_X; and Xy or
no root at all or in the basic case when the curve (C1(w,) is tangent
to the abscissa axis_- one root (Fig. 3.9). In that case when (C1(0)
< 0 the function (j(wg) has only one positive root. We can express
condition (3.23) through the parameters of the aircraft as a char-
acteristic of the motion in the longitudinal plane. To simplify
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the writing let us omit small values such as

¢, m=2 el ,,;“_’y
Y_*b apna L
2u 2
Let us obtain

c® -
u —w -

(3—5——”1!/!/) [ ,;;x ,;?/ 0

Gt T g Ak e > 0. (3.24)

m!/ ITZX my

Investigation of the different types of functions 01(65) can
be conveniently carried out on the planes of the parameters oag, Aoy .
The straight line which is described by Equation (3.24) (Line 1 on
Fig. 3.10), divides the plane of the parameters ag, Aap into two
regions, in one of which the function C;(w,) has either two or no
zeros, and in the others has one zero.

Now let us define on the plane (og, Aap) a region in which the
function Cj1(wy) does not have any zeros, i.e., a region where the
function (1 is constant in sign. The condition of constant signs
of the function (;(wg) is that the subroot expressions (discriminant)
in the formula for the roots of the polynomial Cj(wy) be negative:

D} 4D,Dy<0.

(3.25)
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If we substitute into Formula (3.25) expressions for Dy, Dj
and Dy through the aerodynamic coefficients and carry out the neces-
sary conversions we find the approximate condition for comnstant
signs of the function C1(wgp) in the form of an inequality

* 2
—g AB (-_’i)
m
Aog-+ —= 2 o? -
4,;::4! 2 /0?/ _*;_,/
Zb\?B—mIJ
8 2 (3.26)
B o cz '_(;Z B c’lll -‘:y c!v’ 3 w
e R R s Y| Ll | P S
i - T — O
C” ~w
4mzb(3~?—myy)
cg = e -\ 2
— —g° —w ®
mgle}L + mgAy. + (—A? —mzz) (B ?y —myy)] —4ABu2m bmf/
) e o\ >
— PR
44Bp? mib( B7—%"’>
mxx N

For the small values of interest to us for the trim angle ag
the second term in expression (3.26) is small and can be dropped.
In this case the condition of constant signs of the function (7 (uw,)
can be simplified. The straight line obtained from Equation (3.26)
is shown on Figure 3.10 by the number "2", In the region between
the two straight lines which are described by Equations (3.24) and
(3.26), the function C3(wge) has two zeros.

Of special interest 1s the position of the zeros A;, Ay of the
function (3 (mx) with respect to the zeros of the free term A4g,

since the form of the function Amx(wx, ag, bap) which is proportional

to the ratio of Cl(wx) to Ag depends on their mutual location. The
equation of the curves (ag, Aap), on which the zeros of the function
Cl(w ) and the zeros of Ay coincide, can be found after substituting
into expression (3.21) for the function Cl(w ) the values of wy
equal to the zeros of A4g:

W == 0 (3.27)

0, =05 (3.28)

If we substitute (3.27) and (3.28) into Formula (3.21), we
find two equations for the boundaries of such regions:

ABpPo; 4 03 Dy 4 Dy==0; (3.29)
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ABus+ 03Dy A-Dy=0. (3.30)

Expressions (3.29) and (3.30) are valid in all cases when the /88
critical angular rolling velocities wy, and wpg exist, i.e., 4 has
zeros. Using the relationship which appears in the definition for
EQ and EB

Ao(@,) =Ag(wp ) =0,

(3.31)
expressions (3.29) and (3.30) can be simplified. After carrying
out the necessary calculations we find
- et - — [ —3
¥y ! 2 w L ¥ o™ ; —0-
(mzApBT—rszmyy)ao—mzb(2 B ﬂzyy)Aab—O, (3.32)
WABczﬁn_%a—fz—iB—;%Aa—O
u’ﬁ g 7_l ”lzb"ny 0 mzb\2 Ty b— (3.33)

From expressions (3.32) and (3.33) it follows that the lines which
divide the regions that differ in the different mutual position of
zeros of the functions Cj(w,) and Ag(w,), are straight lines which
pass through the origin ag = Aap = 0 (see Fig. 3.10, Curves 3 and
).

In the case which is of the most practical interest in analyzing
the dynamics of an aircraft with small damping, expressions (3.32)
and (3.33) can be simplified even more. To_do so it is necessary
to use the approximate formulas for Ja and wg:

. s
Ihz‘b . o ”ZU

P - (3.34)

(')? o~

Using the expressions for the critical angular velocities (3.31)
with the aid of Formulas (3.32) and (3.33) we find approximate
equations of the boundaries for the regions of dividing the planes
ag o, AOLb:

a0+Aab=0; (3.35)
___1§b3 »»ﬁzi——qr%Aqb=0.

_-my
2my (3.36)
%B

1—
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The analysis which we carried out of the function 01(5&) per-
mitted us to clarify its basic properties and to divide the plane
(ag, Aap) into regions with different characteristics of behavior
of the curve C1(wy,) with respect to 4Ap(wg). Examples of such a
division for the various relationships between the critical rolling
velocities w_ and wg are plotted on Figures 3.10 and 3.11. From
comparison of these figures, it is obvious that the mutual position
of the regions with different characteristics of change in () (uwg)

is independent of the relationship between the critical angular /89
rolling velocities. This is due to the fact that simultaneously -
with the change in the mutual position of Curves 3 and 4 the mutual
position of the critical rolling velocities wy and wg were changed.
_ _Let us recall that the function
e Amgp(w,) is represented in the form
“FtF of Expression (3.20). Taking this
AL into account and using Figures
] 3.10 and 3.11, we can define six
B, basic types of the functions Amy =
) (wp, g, Aap), which are illustrated
on Figure 3.12. Of greatest inter-
b est is the character of change of
) these functions in the regions of
the angular rolling velocities
less than the first and greater
than the second critical. The
dependence of the dynamic charac-
teristics of an aircraft on the form
of the function Amgz(w,) will be
studied in greater detail below;
however, it is feasible to make
several comments even at this stage of the study. Even a rapid
glance at the curve of the static solutions shows that in the range
of the angular rolling velocities less than the first critical, the
function Amgz(w,) tends either toward + o or toward -co , hence in
particular it follows that in the second case with deflection of the
ailerons by a value which is greater than a certain value, the
continuous relationship between the value AE& and the angular rolling
velocity is disrupted. In this case the aircraft may develop
angular velocities greater than the second critical (w2 cpit)-
From Figure 3.12 it follows that such properties are inherent in
the motion of an aircraft in Cases C and E.

In the range of angular rolling velocities which exceeds the
second critical, of the most practical interest is the question of
the existence of an intersection of the curve of the static function
Mmp(we) with the axis Amy = 0. The existence of such an inter- /90

section (maneuvers of type A, B, C) indicates the presence of a
singular point corresponding to the motion of an aircraft with angu-
lar rolling velocity wg > wy cpi+t with no deflection of the ailerons.
It is obvious that investigation of such cases is of the most practi-
cal interest since the entry of an aircraft into such conditions of
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motion means simply the loss of controllability by the ailerons.

Let us proceed to an investigation of the behavior of the
curves of the static functions Amyp(wg, ¢g, Acp) in the immediate
vicinity of the singular point. The results obtained above are
basic for analyzing the dynamics of an aircraft, and investigation
of the static curves in the vicinity of the singular points is
mainly of theoretical interest. As noted above, in those cases
when the inertial moments of an aircraft J, and Jyz are not mutually
equal, the character of the change in the %unction Amp(w,) in the
vicinity of the singular points is determined by the term CuwyssWzssy
in Expression (3.18). The inequality of the inertial moments
and Jyz are characteristic for aircraft of ordinary design. In fact
if the inertial moment of an aircraft Jp is determined mainly by
the mass which is distributed in the wings then as can be shown by
using the definitions in Figure 3.13 the following approximate
relationship is valid:

Jy==dy—J, (3.37)

z ==

In fact, the expressions for the inertial moments may be ap-
proximately written in the following form:

JX:QMer;
j,zQeri;
Jy == 2AMyr - Mor?),

whence it is easy to obtain Equation (3.37). Ian turn, from Equa-
tion (3.37) it follows that the quantity ¢ is approximately equal
to unity with a minus sign.

~
w
]

|
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Using the relationships in Table 2 and analyzing as the parame-
ters ag and Aop, we can write an expression for the product (wyss'

wzss):
<stszS—;g(CnA@b+<%ﬂ&(CmA@b%Cn%%
(3.38)
where
w - — cic? 1
C = £ 12 7 3 y .
1 = (th)x—{—I/l’j——B '4uz—->,
- = — c* /;Jz
Co=—u, n@ngﬁb+p8mimgﬁ+—%iéb—mg ; (3.39)
z .3 ,—u—’!/ -~ o 8 }
Coy = _11 Ltz e emy SuTa
m, 4n Y 2. '
J

—— __ c*
Coo =02 | —mvm” .- AL
Cog wx( Y e A my ==

From Formula (3.38) it follows that
the function Mmgp(wz, ap, Aap) with criti-
cal angular rolling velocities has a
terminal of second order (and the denomi-
nator Ag enters in the second power).

With the passage of w, through the values
of the critical angular rolling velocities
the sign of the function Amg(wg, ag, bLay)
is not changed since the denominator

(A2) is always positive. In this respect
the sign of Amy(wz) in the vicinity of

the critical angular velocity is deter-
mined only by the sign of the numerator

in Formula (3.20). With identical signs of the brackets, the func-
tion Amy(wg,, 0g, Aap), when wy > wy cpit tends toward (+oo ), and

with different signs to (-o0o). The boundaries of the ranges in this /92
case are straight lines which are determined by the equations

Cuiqb+‘cnan::0;]
Cpiay ' Coxy= 0. | (3.40)
Direct proof is easy to find that in the case when Wy > &B, all
the coefficients Ci1, Ci12, Cp1, C2o are positive. The division of
the plane ag, Aap into regions where the static functions to to +oo
(first type) and to -oo (second type) is clear from Figure 3.1l4, a

and be. The straight lines are plotted for the parameters of an
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Fig. 3.14

From the analysis carried out it follows that_ four different
types of changes are possible in the function Amgp(wg, op, Aap) in
the immediate vicinity of the critical angular velocities that
differ in the character of the change Amy.

Table 4 gives a summation of the possible groups of types of
functions Amgz(wg) in the vicinities of the critical velocities.

In this case the number "1" denotes growth in the function Aﬁé
in the positive direction (+o00 ) and the number "2" in the negative
direction (- ).

Depending on the group of parameters oag and Aap for which the
rolling maneuver is carried out, one of the four types of changes
in the function AE&(G@) is possible in the vicinity of the critical
velocities. The proper division of the plane (ugp, Aap) can be ob-
tained by using Figure 3.14, a and b. An example of such division
is shown on Figure 3.15.

Thus the investigation which we carried out shows that in the /93
general case when there are two varying parameters of the longitudinal
control Aap and ap, six possible types of change in the function
Mmy(wy) are possible, in each of which in the immediate vicinity of
the critical velocities E& the function can be still one of four
types. However, as computations show for practical problems there
is no necessity for analyzing the behavior of the curve Am,(wg) in
the immediate vicinity of the critical rolling velocities.
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property that they do not intersect anywhere, with the exception of

the

equilibrium).

14.

TABLE 4
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Fig. 3.15

Analysis of the Stability of Motion in the Vicinity

of the Singular Point

As noted in Section 11, the phase trajectories possess the

"singular" points or points of "rest" of the system. In this
case the phase trajectories may either "enter into" the singular
point (in this case the singular point corresponds to a state of
stable equilibrium), pass alongside, or "leave from" it (unstable

A detailed investigation of the motion of an air-

craft in phase space with the location of the phase trajectories at
all points of this space is quite complex and there is no necessity

for so doing.

Of considerably greater interest is the simpler

problem of finding the position of the singular points in phase
space and the investigation of the motion of an aircraft in their

vicinity.

investigation of the motion "in the small" and therefore is extreme-

The problem of determining the type of singular point is re-
duced to an analysis of the motion in its vicinity, i.e., to an

ly close to the problem of analyzing the stability of motion near

the singular point.

In this case the knowledge and use of the

criteria of stability or instabllity of motion permits determining
to which type the singular pocint under investigation belongs, and
also as to whether the motion in its vicinity can be practically

realized.

s8u

Unfortunately in the form that is used for analytical
investigations all the criteria of stability of motion cannot be
obtained, however one of the most important criteria, i.e., the

criteria of the aperiodic stability, can be reduced to a rather

simple and clear form.

In analyzing the motion of an aircraft iIn a certain small
vicinity of the singular point, Equations (1.33) can be simplified
by converting them to equations in variations relative to the
parameters corresponding to the motion at the singular point of the
system of equations of motion. Let us write, as is usually done in
linearizing equations, the parameters of motion of the aircraft in
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the form

ANl
o=, i e d—Aa; 1
B, Gy gl
3o=3 o AY L (3.41)
i v | 17
— 88 -
=y £2 30 |
MV

Carrying out the usual procedure of linearization we find the
system of uniform equations in the variations (for brevity of
description the sign of variation A in the equations is omitted):

o] + (‘I—'w)z—*—uamro—}— 1 u) —O

- = = - -~ = - =
W, — mz‘b(l — mzf)“’z_{_ Avw g0, A!u-)y,.s 0p= 0;
3

or F - - 3 f{
¥ iy — 25 (0010 By w00, | (3.42)
4 -“
m ——mw——'n “y. uy»— I?Ln 0w, — u./S’(-) SS-(:)_\,'::O;
. S - o, \ T
o — Il Xu) c— Cuy sg®e— M- (}LCU)LSS-I-- my ) wy==0.

To define the conditions of stability, it is necessary to look
at the characteristic equation of the system of Equations (3.42),
which in the general case can be written in the form

1240,

LA Bl B2 By | (3.43)

The expressions for the coefficient By, By, By, By, Bg through
the aerodynamic and inertial characteristics of the aircraft are
quite awkward and cited in Table 5.

Before we proceed to an analysis of the Equations (3.43) we
must make several comments. The problem which is examined in this
section 1s quite near to that studied in Chapter II. The difference /97
consists of the fact that the stability of motion of an aircraft T
when wgp = const was analyzed earlier which in particular corresponds
to the equations C, mg, mPY being equated to zero in Equations
(3.42), etc., (of all coefficients in the equation of the rolling
moments other than m@¥ etc.). In the present section we look at
the stability of motion of an aircraft by taking into account the
fact that in the general case the angular rolling velocity [because,
e.g., of the presence in the aircraft of lateral stability (m # 0)]
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The expressions for the coefficients Az, 42, 41 and Ag can be found
from Formulas (2.11)-(2.14); (9 = wgg)-.

87



may during the maneuver change as a function of the changes in the
parameters of motion. As will be obvious from the following, such
a variability in E& complicates the type of criteria of stability
and in certain instances leads to the appearance of new regions of
unstable motion,

The conditions of stability for solving the system of Equations
(3.42), according to the criteria of the Hurwitz stability, are the
satisfaction of the system of inequalities

34:>O; Bs>>0; 32:>O; Bl>>0; Bo>>Q

R, =B,B;—B,>0; (3.4y)
RQ :Rl (8231_8330)‘(3481— BO)2>O.

Not all of the inequalities (3.44) must be verified in analyzing
this stability since a part of them are covered by other stronger
conditions. For example, in satisfying the conditions By > 0, Bj
> 0 and BR; > 0, the inequality Bz > 0, etc., must be satisfied first.
However if even one of the inequalities is not satisfied this then
indicates an instability of motion in connection with which writing
all the criteria of stability in certain instances permits simpli-
fying the problem of determining the conditions of loss of stability
of motion. The conditions of stability (3.44) written in the form
of relationships between the aerodynamic and inertial character-
istics of the aircraft are complex and in practice may be used only
in making the calculations on computers. One exception is the
criterion of aperiodic stability By > 0 which determines the stability
in many of the cases that are of practical importance and may be

obtained in a rather simple form. The condition By > 0 is analo-
gous to the condition of the aperiodic stability 43 > 0 _which was
given in Section 8, and in satisfying the equation C = mg = 0 is
converted into it (see Table 5). The inequality By > 0 as we know
is a necessary condition of the aperiodic stability of motion of an
aircraft in the vicinity of the singular point. From the negativity

of the free term of the characteristic equation Bg it follows that
the singular point is a saddle type, i.e., the phase trajectories

do not enter into the singular point and the stable motion in the

vicinity is not realized.

From the system of Equations (3.42) it follows that the ex- /98
pression for By can be obtained if we expand the determinant
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In determinant (3.45) the minor
by the use of which the free term of

ki
Cy . o .- 0:
5 Bl o 2003 H
— .’n';b; — m:’Z ; 0; Ao g
By= 6
— ('z
— g 0 - —u;
2
. . 3, Ty
0; ———p.Bo)xo, — My ——mjy,
0; —pCoyggy —mi — (quz ssh

(3.45)

is set off by the dotted linme
the characteristic equation 4y

in Section B8 is computed for the motion of an aircraft during a

steady rolling turn with wgp =
the determinant (3.45),

const.

With the direct expansion of
rather complex expressions are obtained.

For simplification of the computations let us do the following. We

convert the right-hand side of the equation of equilibrium of moments
relative to the longitudinal axis of the aircraft 0X,
parameter type,

parameter of motion (increasing
After such a transformation, if
(3.45) instead of the last line
is convenient for computation.
greater detail.

to a single-
after writing it in the form of a function of_one

the angular rolling velocity wg).

we set this function into determinant

we will reduce it to a form which
Let us make these computations in

We look at the equation of motion of an aircraft relative to
the longitudinal axis in the variations

Let us divide in Equations (3.46) the terms which correspond to
quasistatic changes in the parameters of motion.

t/u»x

dt

— oz .!}1::.\‘“,'\. . ‘v,[‘j‘(_"}_}_ Cuw o

V88 72

+Co,

S

sj("!/-

(3.46)

We can express

for this purpose all the parameters of the disturbed motion B, wgz,

w,, which are included in Equation (3.46) through the increase in the
value wg.
can be written in the form of several '"quasistatic" changes connected

The increments of the variables which enter into (3.45)

with the change in the value of the variation w, and the dynamic
changes which depend on the derivatives of the parameters of motion
For small variations of wy, the '"quasistatic" changes in

in time.

the parameters of motion B,

form:

(.Uy,

ete.,

may be written in the following
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’é’___( aa,ss) =

! 0 fo-u, T

;yz(amysé o (3.u47)
0Q }‘." =®,.9 *? "

- dozs g -

o’z':( 0Q /;x=“’x0.mx'

The variables B, Gy and GZ would seem to describe changes in
the respective parameters of motion with infinitely slow change in
the angular rolling velocity by a value of wg. The total changes
in the wvariables B8, Wy, Wy may be written in the following form:

b =B+ g ((_;’J,-, a, ) i

~ . ]
0y ==, +&s, (_3_(, a, ); l} (3.u48)
EZ::),Z —]ng_n (..j.\’ (.17 )’J

where the functions gg, guy, gug describe the "dynamic" components
of change of these variables and vanish in steady motion. If we
substitute Expressions (3.47) and (3.u48) into Equation (3.46) and
group the terms by wy, we find the equation for the change in the
variation wgy in the form

[lz)x . —w, ! 0%:Sé
= .-[I!IxX-T-Illx (—; Ja +

art Ouwy Joy=wyg
duygdoes's ]~ N
_I_C( Es = W f(m_\,; a, .
_a"’x Cx U0 :

where f'(;x,...), analogous to g4, describes the dynamic components
of the function. Direct verification is easy to obtain that the
expression in the brackets is equal to the derivative (3Amg/Juy)wy
= wpp with the reverse sign. Trom the transformations it follows

that the free term of the characteristic equation of the systems
of Equation (3.42) [determinant (3.45)] can be written in the form

Ay
B - , N
[ )
0 ;(@ﬁu) (3.49)
n 0 I

e
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where Ag is the determinant for the free term of the system of
Equations (1.33) which were studied in detail in analyzing the
stability of steady rotation af an aireraft at a constant angular
rolling velocity. If we expand the determinant (3.49) from the
elements of the last line we find the final expression for the
free term of the characteristic equation By in the form

~
—
o
o

. dAm,,
- BO=A0( = ) ) (3.50)
J)x w

x0

On the basis of Equation (3.50) the necessary condition of the
stability Bg > 0 may be written in greater detail in the following
form which is convenient for use. The motion is aperiodically
stable if the following inequalities are satisfied:

0Am

’au—)mi>0 when Ay >0; (3.51)
dl;zx A <0

7ﬁj_<;o when 0 . (3.52)

Since the criterion is quite important, let us look briefly at
the second method of obtaining it. We can determine from the system
of equations in variations (3.42) the increase in the value of Aw,
corresponding to the small increment of the external rolling moment
(mgp), which we can add to the right-hand side of the last equation
in system (3.42). Let us set the derivatives in Equations (3.42)
equal to zero and seek the solution for Aw, from the general rules
in the form of a ratio of determinant (2.45) (in which the extreme
right-hand column is substituted by the column of zeros in all lines
other than the last one where the value Am, is found) to the free
term of the characteristic equation Bg:

(3.53)

If we expand the determinant in Expression (3.53) we obtain

s =MV on g AO(Aﬂ£>.
0

Awy

Hence, if we proceed to the limit and direct AE& and AE& toward
zero we find the same expression for By, just as previously, in the
form
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;= /a'—x
By= A,lim (—ii’—’i):Ao. (v—aff)‘

A
0 A
_\uxx»

It should be noted that the obtained criteria of stability are
precise and not approximate and may be verified by direct computa-
tion.

It is easy to see that inequalities (3.51) and (3.52) are a /101
generalization of the condition of aperiodic stability of motion of
an aircraft obtained in Section 8 during the steady rotation rela-
tive to the longitudinal axis. In fact, in order that the motion of
the aircraft at a constant angular rolling velocity be stable, it
is necessary that in the equation of equilibrium of moments relative

to the longitudinal axis,

do,

drt

i * (3.54)

that the value of m2%¥ be negative.
From Equation (3.54) we find the expression for the derivative

ddmyp /3wyt

dAm, — 3

Gy e (3.55)

From Expression (3.55) it follows that the derivative does not
depend on the size of the angular rolling velocity and is always
positive. 1In this case from Expressions (3.51) and (3.52) we find
the condition of stability in the form

AO>Or

which agrees with the criterion of aperiodic instability given in
Section 8.

The inequality Bg > 0 and conditions (3.51) and (3.52) are
necessary but not sufficient criteria of stability. This means
that for the stability of motion in the vicinity of the singular
point their satisfaction is necessary; however, it is insufficient
for proof of the stability of motion. TFrom the inequality Bg > 0
it follows only that in the characteristic equation there is no odd
number of real positive roots. However, we can not exclude the
possibility of the presence of an even number of positive real roots
or any number of complex conjugate roots with a positive real part.
Usually the characteristic Equation (3.43) has no more than one
positive root with respect to which the criteria of stability (3.51)
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and (3.52) permit determining the aperiodic stability of motion of
an aircraft in the vicinity of the singular point, i.e., the iso-
lation of saddle-type singular points.

The criterion of aperiodic instability given permits finding
a rather important type of singular point quite easily, i.e., the
saddle-type singular points which in a large number of instances
divide the regions of attraction of singular points of "focus" type.
The other criteria of stability (3.44) cannot be simplified.

Let us look briefly at several properties of the coefficients
and roots of the characteristic Equation (3.43). Let us look at
the behavior of the free term:of the characteristic equation in the /102
vicinity of the critical angular rolling velocities. In analyzing
the motion of an aircraft with wg = const we found that the free
term of the characteristic equation vanishes and then changes sign
with transition through the critical angular rolling velocities.
In the general case mR # 0 the changes in By in the vicinity of the
critical velocities may be studied in the following way. It is
easy to show that the function Amg,(w,) can be written in the form

Amy= =~ %= (3.56)

where the function G( x) has no zeros corresponding with the zeros
Agluwgp).

By differentiating the function Aﬁé over Ex’ we find

P 04y e10;

rA gl

Omy Gwy | Owy (3.57)
duyg A3 R P

Let us substitute Expression (3.57) into the formula for Byj:

G (g} 9dg | 0G (o)

Bo= — Ay Owy oy (3.58)

With transition through the critical rolling velocity the
value Ay vanishes and the derivative 34(3/3wge 1is non-zero. Hence
it follows that at critical angular rolling velocities, Bg has a__
terminal of first order, i.e., in the approach of the parameter wy,
to the critical values, the roots of the characteristic equation
begin to grow without limit and with passage through the critical
angular velocity at least one root undergoes disruption and changes
sign.
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From Table 5 it is obvious that the coefficient By of the
characteristic Equation (3.43) does not depend on the sign of the

angular rolling veloclity, Wg. On the other hand, it is known that
the sum of the real parts of all roots is equal to this coefficient,
i.e.,
= (2,4}, )= const.
B, ;( e s (3.59)

Thus, from Equation (3.59) it follows that if the real part of
even one of the roots of the characteristic equation begins to grow,
in particular if it tends to an infinitely large value then there
is always a root whose real part tends to infinitely large values
of the opposite sign.

15. Investigation of the Motion of an Aircraft in Phase Space.
Types of Rolling Maneuvers with the Simultaneous Control
by Aileraons and Elevator

Let us proceed to an investigation of the possible types of
controlled spatial motion of an aircraft. It is possible to obtain
the most general representations of the spatial motion of an air-
craft by using the methods of the qualitative theory of differential
equations. However, in such case we must introduce limitations to
the possible types of control deflections. In fact, in order that
the motion be analyzed in phase space it is essential that the
system of equations of motion be autonomous, i.e., that they do not
contain variables of time parameters. One exception involves
intermittent - gradual changes in which case at the moment of a
sudden change in parameters the phase picture of the motion is
also changed respectively. With respect to the comments below we
will look at the maneuvers of an aircraft which are carried out
with the simultaneous gradual deflection of controls in various
combinations. This somewhat limits the region of applicability
of the results obtained since the limitation in speed of deflections
of the controls is not taken into account. However, the solutions
thus found permit obtaining a qualitative concept as to the dynamic
characteristics of an aircraft in the general case.

Both the transient conditions and the steady values of the
parameters of motion of an aircraft are determined by the values
of the control deflection. In such case, each combination of the
gradual control deflection (85, S8e, 8p) is represented by a given
system of singular points in phase space of the parameters of
motion (a, B, Ex, Ey, Ez) and the values of these parameters (og,
Bo> wxp> Wyo > wzp) @t the moment of time preceding deflection of
the controls are the initial ones. It is obvious that the motion
of an aircraft with the simultaneous gradual deflection of the
controls can be studied in phase space by taking into account that
with each new deflection of the controls, the phase picture and the
position of the singular points vary. In this case, the initial
position of the figurative point in phase space depends on the
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interval of time between the moments of the control deflections.

In the present section we analyze the dependence of the number
and type of singular points on the values of the aileron and elevator
deflections and briefly look at the motion in the small vicinity of
each singular point. Control of the aircraft using ailerons and
rudder will be looked at separately. With respect to this, in the
analysis we can limit ourselves to three basic parameters (85, ag
and Aap), which characterize the control of an aircraft on which the
interrelationship of the longitudinal and lateral motions depend
with the simultaneous control of pitching and rolling.

The motion of an aircraft in the vicinity of the singular /104
point is described by the linear differential equations (3.42)
given in Section 14. The basic method of analyzing the qualitative
picture of the motion will be the determination of the type of
singular point and finding the dependence of the roots of the
characteristic equation of the system of Equations (3.42) on the
value of the angular rolling velocity at all singular points.

In Section 11 we introduced a definition of the singular points
on which are based the "spatial focus" and the "spatial saddle".
These types of singular points correspond to the two characteristic
types of motion. If the singular point is a focus, the phase
trajectory either "is wound" on it, or is "unwound" as a function
of whether all the real parts of the rocots of the characteristic
equation are negative or 1f there are positive real parts of the
complex-conjugate roots. In the case when the singular point 1is
a spatial saddle, the phase trajectory approaches it at a certain
minimal distance after which it remains at that point. One ex-
ception consists of the phase trajectories which lie on the
separatrix surfaces that pass through the singular points of "saddle"
type. It 1s mnoted in Section 11 that the separatrix surfaces de-
fined in the phase space regions with different types of phase
pictures in particular define the regions of attraction of the
singular point of "focus" type. With respect to this the deter-
mination of the singular points of the '"spatial-saddle" type 1is
of special interest. The criterion which permits defining saddle-
type singular points was given in Section 14 and includes the fact
that the singular point is a saddle if the following inequality is
satisfied:

dim, .

—Ezf:>0, if A, <0
0Am,

Tomn <0, 55 A4>0.

(3.60)

Before we proceed to the general case of motion of an aircraft,
let us look at the specific case when mg = C = 0. In this case
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the criterion for the existence of a saddle-type singular point
(3.60) is simplified (see Section 14) to the form A4y < O.

On Figure 3.16 is constructed the function AE&(B&) for this
case and the corresponding dependence of the root of the character-
istic equation on the angular rolling velocity wp. From Figure
3.16 it follows that the relationship between Am, and the parameters
of motion of an aircraft is a unique one and does not depend on
the pitching motion of the aircraft (agp, Aap). In this case the
motion outside the range of the critical rolling velocities is
stable and in the range between the critical rolling velocities
there exist saddle-type singular points and the motion for the
entire parameters other than wg is unstable.

The dynamics of an aircraft in the general case are described /105
much more complexly when mg # 0. In this case the type of division
in phase space of the singular points depends on the parameters of
the longitudinal motion which is assocciated particularly with the
increasing complexity of the type of function Amy(wy,) that was
analyzed in Section 13.
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Fig. 3.16.

Below we shall look at the different types of spatial maneuvers
of an aircraft. As the type of spatial maneuver we mean the possible
types of phase pictures which correspond to a fixed combination of
deflections of the aircraft controls for pitching (in the general
case for pitching and yawing) for all possible values of deflec-
tions of the ailerons. In accordance with this the types of spatial
maneuvers are determined by the pitching control of the aircraft
and the specific realization of the motion even now depends on the
size of the aileron deflection. In Section 13 we looked at the
first part of this problem, i.e., we found the basic types of the
dependence of the required values of the aileron deflections on
the parameters of control of the aircraft for pitching, i.e., the

¢
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types of the function Amg(wg, 0g, Aap).

The function AE@(G&, ag, Aap) to a large degree determines the
type of motion of the aircraft, particularly the condition of its
aperiodic stability (see Section 14). In this respect for the
basis of investigation of the phase pictures in the space of the
parameters_of motion of an aircraft, we take the corresponding
function Amgy(wy, ap, Acyp) and for each type of such function (type
of maneuver) we find the dependence of the number and type of
singular points on the size of the deflection of the ailerons and
analyze the condition of the possibility of motion in the vicinity
of the obtained singular points.

Type B Rolling
Maneuver

Definitions

® Stable spatial
focal point.

oUnstable spatial
focal point.

¥ Spatial saddle
point.

Fig. 3.17

Let us note several general rules for location of the singular
points in phase space. We can show that if Jy = Jz(C = 0), then
the singular points of focus type alternate with the change in the
parameter w, with saddle-type singular points., In fact, in this
case the character of the disruption of the function Amgy(wg) is
such that the derivative 3mg/dwy,, in passing through the critical
angular rolling velocities, does not change sign but the wvalue
Ag(wy) does. On the_other hand, in the regions_ of continuous change
of the function Amyp(wg,) it is obvious that if Amy(wg) assumes
identical_values for two different sizes of the angular rolling
velocity wg between the angular velocities due to the continuous-
ness of the function the derivative changes sign. Hence, by taking
into account criterion (3.51) we find that the singular points of
focus and saddle-type do in fact alternate for the parameter uwg.
This property in the general case in the vicinities of the critical
angular velocities is disrupted. In fact when C # 0, with passage
through the critical angular velocity, Amg(wg,) tends to infinity
but does not change sign thus indicating the simultaneous change
in the sign of the derivative 93my /3w, and 4 (Bx). According to
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criterion (3.60) in this case the type of the singular point, both
with smaller than critical and larger than critical angular veloc-

ities, 1s mnot changed. Let us note that all the remaining parameters

of motion, with passage through the critical rolling velocity,
change sign, i.e., such singular points seem to be arranged "anti-
symmetrically" in phase space relative to the axis Owy,. When the
coefficient C tends toward zero, these pairs of singular points in
the vicinities of the critical angular rolling velocities for all
of the parameters of motion other than w, remain a distance apart
from one another and at the limit go to infinity.

Let us proceed to an anlysis of the properties of the possible
types of spatial maneuvers of an aircraft on an example of types
B, ¢, D and ¥ which are of the most practical interest (see Section

13).

Since the motion of an aircraft in the immediate vicinity of
the critical rolling velocities in the general case is of basic
theoretical interest then IiIn all computations we assume that C = 0.
As noted in Section 13, such an assumption leads to errors only in
analyzing motion In quite small vicinities of the critical rolling
velocities. However, the number of possible types of maneuvers
which are necessary for analysis are considerably decreased.

Type B Rolling Maneuvers

The function Aﬁ&(aé) for the entire range of changes in the
angular rolling velocity

—o00 <l w, < 0o (3.61)

is shown on Figure 3.17. Graphs of the regions of values of the
parameters of motion in the longitudinal plane (ap, Aayp), for which
the function Amx(wm) has such a shape, are plotted on Figure 3.18.
For this type of rolling maneuver the initial one is flight when
the major inertial axis of the aircraft is located under the veloc-
ity vector. In this case, as a function of the value of the ailer-
on deflection, the motion of the aircraft will be different.

From Figure 3.17 it follows that each value of the angular
rolling velocity wy, is represented uniguely by a certain value of
the aileron deflection (the quantity Amg). With respect to this,
as an example of the basic parameter, we can look at the value of
the angular rolling velocity wg.

On Figure 3.19 are given graphs of the trajectories of the
roots of the characteristic Equation (3.43) plotted for the case of
motion under analysis when w, > 0. The trajectories of the roots
for w, < 0 are obtained as a mirror reflection of the semiplane

we > 0.
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From the very method of finding the roots, using the character-
istiec Equation (3.43), it follows that they describe the dynamic
properties of motion in the immediate vicinity of the respective
singular point that is determined by the angular rolling velocity
Wee. With the help of Figure 3.19 for a given deflection of the
ailerons we can find the values of wyp for which the motion of an
aircraft is possible and consequently all singular points in the
values of the roots of the characteristic equation on which depend
the motion in the immediate vicinity of this singular point where
the linearized Equations (3.42) are valid. FTFor a type B maneuver,

we can define three basic regions
) ) « of values of the lateral moment
{T[I}ny%} _ QZ (Amy), located symmetrically rela-
% Type B Q% 1T tive to the axis Amg, = 0, which
Rolling L
4

~
[
o
[oe]

differs in the number and type of
E Maneuver ?Q,ﬁ__a7 singular points and corresponds to

the different character of the

motion of an aircraft with control
b by the ailerons. Let us look at

these regions in more detail.
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In this range of aileron deflections (the values of the con-
trolling moment, acting relative to the longitudinal axis) there
are five singular points of which three are singular points of
stable-focus type and two of saddle-type and three regions of stable-
focus type and two of saddle-type and three regions of stable motion
relative to the singular points a, b, and ¢ which are defined by
saddle-type singular points (see Fig. 3.17). What_kind of aircraft
motion for each value of the aileron deflection (Amg,) from the in-
terval (3.62) will in fact be realized depends on the initial con-
ditions during the maneuver. In this case the values of the parame-
ters_of motion, particularly the value of the angular rolling veloc-
ity w, in the steady system will be different (see Fig. 3.17). For
example, in carrying out a rolling maneuver from the conditions of /1089
flight with zero initial conditions based on the basic parameters
of motion, the point of "attraction" for the solution is the singu-
lar point a;. The character of the dynamic properties of motion in
the vicinity of this singular point may be estimated according to
the values of the roots of the characteristic equation given on
Figure 3.19. TFor other initial conditions the points of "attraction"
of the solution may be the singular points ¢; and b;. In practice,
motion in the vicinity of all three stable singular points is real-
ized. As noted above, motion in the vicinity of the singular point
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b1 is realized in that case when the gradual deflection of the
ailerons is accomplished under zero initial conditions based on the
angular rolling velocity w, and the remaining parameters of motion.
In carrying out a rolling maneuver by deflection of the ailerons by
a value which lies in region II, the motion of the aircraft is
accomplished in the vicinity of_the singular point by. Change under
these conditions of the value Am, up to values from region I creates
conditions for realizing motion in the vicinity of the singular
point b;. Under analogous conditions motion of an aircraft is
realized in the viecinity of the singular point e¢313; only for this is
the initial application to the aircraft of a negative control moment
of roll (Am,) necessary from region II. From Figure 3.17, it is
clear that motion in the vicinity of the singular points of type

b1 and ¢] can be realized also with the ailerons placed in the
neutral position. Such conditions of motion of an aircraft, when it
practically loses controllability by the ailerons, have been called
systems of "inertial rotation" or a system "autorotation" of the
aircraft. This latter designation is especially widely used in

the foreign literature.

Figure 3.20 shows the graph of the change in the basic parame-
ters of motion of an aircraft when its motion (after change of sign
of the deflection of the ailerons) is realized relative to the
singular point of b; type (see Fig. 3.17). Such systems are studied
in greater detail in analyzing the dynamics of controlled motion of
an aircraft in Chapter IV.

Let us note that the systems of "inertial rotation'" of an air-
craft corresponding to the motion in the vicinity of the singular
points on the static curve b and ¢ (see Fig. 3.17) were observed in
flight. From the point of view of aircraft dynamics the motion in
the vicinity of the singular points of ¢; type is interesting in
that the positive value Am, is represented by a negative angular
rolling velocity, i.e., a rolling velocity which is opposite to
the usual sign.

Second region

IA‘;lxll \<I~\Ex| \< IAExQ!‘
(3.63)

In the range of aileron deflections (3.63) there are three
singular points, two of which (by, ¢5) (see Fig. 3.17) are stable
focal points and correspond to the stable motion of an aircraft,
and one is a saddle-type singular point. The separatrix surfaces
which pass through the singular point divide the phase space into
two regions, in each of which the motion is stable. With zero ini-
tial conditions and gradual deflection of the ailerons the point of
"attraction" is the singular point bo.

An example of the transient condition in the vicinity of the
singular point by is the beginning of motion shown on Figure 3.20
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(prior to change of the aileromns).

Region II (see Fig. 3.17) creates a "window'" in the static
curves and permits during control "realizing" motion in the vicinity
of the singular points b3, by, b3 on curve b and in the vicinity of
the singular points ¢i;, ¢3, €3 on curve c.

Third region

Am | > 1am,). (3.64)

In this region there are five singular points since two singu-
lar points again appear additionally. In this case the singular
points ¢33 and b3 are stable focal points, and the singular point asj
is an unstable focal point. The regions of attraction of the focal
points are separated by saddle-type singular points. With zero
initial conditions and gradual deflection of the ailerons by a
value which satisfies condtion (3.64) at the beginning of the trans-
ient condition motion is realized relative to the unstable focal
point. However, since in the vicinity of the singular point asj
there are no other singular points other than the saddle-type then
as a function of the parameters of aircraft either a certain limiting
cycle is established and the motion has the character of undamped
nonlinear oscillations or the phase trajectory penetrates the
region of attraction of the singular point bjy.

Motion in the vicinity of the singular point b3 can also be
realized by the subsequent deflection of the ailerons from the be-
ginning by a value which satisfies conditions (3.63) and then
additionally up to a value which satisfies condition (3.64). In
this case the motion is stabilized after the first deflection in
the vicinity of the singular point of b, type (see Fig. 3.17), and
after additional deflection of the ailerons near the singular point
of by type.

Motion in the vicinity of the singular point ¢3 is realized
with the subsequent deflection of ailercns first from the negative
part of region II [Eq. (3.63)] and then with change to positive
region III [Eq. (3.64)]. 1In general motion in the vicinity of the /112
singular points ¢3 and b3 can be realized because of the presence
of a "window" in region II.

Such are the basic properties of the qualitative picture of
possible types of motion of an aircraft during rolling maneuvers of
B type. A brief analysis shows that substantial difference in the
results following from the total equations of motion in their
simplified linear equations of motion. Using the linear equations
of motion we were able to determine only the singular points which
lie on the asymptote
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w
= X —
mx .wx
§ =- ¥ =
a _3
m_a
x
The difference in solutions is clearly obvious in Figure 3.17.
Let us note that also with small values of the deflections of ailer-
ons, particularly when 83 = 0, from linear theory we may find only
one singular point, however as was shown
above i1f the initial angular rolling veloc-
!“”X . . anre ity w, of the aircraft is high then motion

is also possible with undeflected ailerons
in the vicinity of the singular points
- e1 or byp. With small values of the de-
viations of the parameters of motion from
zero and small deflections of the controls,
A - linear theory qualitatively describes
+ grr é%f‘ the motion of an aircraft properly, since
1iype % . . . " s n
Rolling in this case the p?lnt of attractlo?
*LjManeuver_ is the singular point a3 and the region
of 1ts M"attraction" is bordered by two
saddle-type singular points. However it
Fig. 3.21 should be noted that the region of changes
in parameters, for which linear approxi-
mation gives us sufficlent accuracy, depends on the parameters of
control of the aircraft for pitching (ag, Aayp).

Type C Rolling Maneuvers

Such a maneuver exists 1f the parameters which characterize
the longitudinal controlled motion of an aircraft ag and Aap lie
in the region that is shown in Figure 3.21. Such a type of maneuver
exists when the rolling turn is carried out from the conditions of
flight of the aircraft with a negative G-force (ag < 0) with a pre-
liminarily small deflection of the control stick (Aap > 0). From
the viewpoint of practical flying such a type of maneuver is mainly
of theoretical interest. Static curves of the function Amy,(w,) for
a rolling maneuver of (C type are shown on Figure 3.22, and the
trajectories of the roots on Figure 3.23. From these figures it
follows that in the entire region of aileron deflections in phase
space of the parameters of motion there are three basic points of /113
stable and unstable spatial focal types and two saddle~type singular
points, which define the region of "influence" of these singular
points. After deflection of the ailerons for zero initial conditions
the figurative point in phase space moves to a point which is an
unstable focus. Motion in the vicinity of the singular point a3
(see Fig. 3.22) is a nonlinear undamped oscillational process, and
in phase space there may be a certain limiting cycle that is valid.
Motion in the vicinity of the singular points b1 and ¢) may be ob-
tained by subsequently carrying out a type B_maneuver with escape
to the angular rolling velocities exceeding wgy2 cpit+ and then a
type C maneuver, i.e., by the subsequent deflection of the elevator
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and ailerons.

Type C Rolling Mareuver
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Type D Rolling Maneuver

Type D rolling maneuvers occur if the parameters (ap, Aab),
which characterize the longitudinal control of an aircraft, lie in
the region noted on Figure 3.24. In order that the rolling maneuver
belong to a D type, control of the aircraft for pitching must be
accomplished by deflection of the control stick away (Aap < 0) under

conditions of horizontal flight (ag > 0). The maneuver is mainly of
theoretical interest since it is accomplished for a narrow_range of
parameters (ag, Aop). The curve showing the function Amg(wyg) for

type B maneuvers is shown on Figure 3.25 and the trajectories of
the roots on Figure 3.26.

From Figure 3.25 it follows that there are four basic ranges
of values of Amgp which differ in the number and type of singular
points.

First region

IAI—n_xl < |AE\'1‘-
(3.65)/116

In this region there are five singular points: +three singular
points of stable focus type, which are separated by two saddle-type
singular points. For zero initial conditions the motion is ac-
complished relative to the singular point corresponding to the stable
focus; as a result of the system there are observed damped oscilla-
tions. Stable solutions in the vicinity of the singular points b
and d; (see Fig. 3.25) may be obtained because of the presence of
a "window" in the second region which is examined below with the
respective changes in the ailerons analogous to that which was done
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in analyzing the type B maneuver.

Second region

IAm | <[ am, | < | am,,). (3.66)/117

The second region is the "window" which permits penetrating
to the singular points on curves b and d. In this region there are
two singular points of stable focus type, that are separated by a
saddle-type singular point (see Fig. 3.25).

Deflection of the ailerons for zero initial conditions leads
to motion in the vicinity of the singular point by. The return of
the ailerons to neutral position after establishing motion in the
vicinity of the singular point bp leads to motion in the vicinity
of the singular point b;.

Third region

|am | <1 am | < | Am . (3.67)

In the third region there are five singular points; three
points of stable focus type and two saddle-type singular points,
which describe the focal point. Under zero initial conditions,
motion occurs relative to the stable focus bj.

Fourth region

lAm'xI > lAmxal- ( 3.68 )

In the fourth region the number of singular points is the same
as in the third region but the singular point of stable focus type
on the branch of the static function » (see Fig. 3.25) becomes an
unstable focal point.

Type £ Rolling Maneuvers

On Figure 3.27 the range of values (agp, Aap) is plotted for
which type E rolling maneuvers are realized. Maneuvers of this
type are characteristic of the controlled rolling motion of an air-
craft that is carried out from conditions of horizontal flight or
flight with a positive normal G-force. T¥peF rolling maneuvers for
the neighboring region of parameters (ag, Aoy ) are little different
from type F maneuvers and therefore are not studied separately.

On Figure 3.28 the graph showing the function AE&(E&) is

plotted for the entire range of angular rolling velocities. Tor
type E rolling maneuvers we can define five basic regions of values
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of the quantity AE&(B&) which differ in number and type of singular
points (see Fig. 3.28 and 3.29).

First region

IAE:|\<]AHAI{- (3 69)

In the first regiocn there are five singular points, three
singular points of stable spatial-focus type and two singular points
of spatial-saddle-type which correspond to the unstable motion and

separate the regions of stable motion. The point of "attraction", /119
i.e., the singular point to which the parameter of the motion of an
aircraft tends, depends on the initial conditions of _motion. for

maneuvers which begin from small angular velocities wgp(0), ZQ(O),
wz(0) such a point of attraction is the singular point with the
least value of the angular rolling velocity w,. The separatrix
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surfaces which leave from the singular points of '"saddle" type
separate the regions of initial conditions intoc three, each of which
has its own singular point that appears as the point of attraction.

An example of the transient condition with gradual deflection of
the ailerons when motion is realized in the vicinity of the singu-
lar point of a type (see Fig. 3.28) is shown on Figure 3.30. Such
controlled motion of an aircraft is
Ryp=12 one of the most typical for rolling
—_——————— maneuvers and will be studied in
qu”¢ad/Sec greater detail in Chapter IV.
n .
£ﬂﬂrad I 0 ¢ Second region
et N
003rad — — —
N~—— A < lam,| < | A, (3.70)
o T T 5 T TTH tsec
In the second region there are
Fi 3.30 three singular points: two singular
g- points of stable focus type and one of
A =2 saddle type. The motion during rolling
r0 maneuvers, accomplished from undisturbe
/ﬂég[\\/p\v/ﬂ\J/\\// flight, is realized in the vicinity of
(%ﬁ%rad/ c the singular point ay (s§e Fig. 3.28),
0ﬂ%ggd>f\?Jf\\/§\%c>~%:? and the transient condition is of the
el ). . same type as the process shown on
IN/ -5 10 t Figure 3.30.
. N Third region
'0 S 0w tsec
o A - 3.71
oo <jam) < |am, . (8.71)
Fig. 3.31

The number of singular points in
the third region is the same as in the second; however, one of the
singular points of stable focus type becomes an unstable focus type.
With deflections of the ailerons that satisfy conditions (3.71),
nonlinear undamped oscillations relative to the unstable focus ag
are established (see Fig. 3.28). An example of the transient
condition corresponding to motion in the vicinity of the singular
point of a3 type is shown on Figure 3.31.

Fourth region

[am o <Tam | < | am,. (3.72)

In the fourth region there are two singular points of unstable
focus type, one of stable focus type and two saddle-type singular
points. The deflection of the ailerons with zero initial conditions
leads to the onset of nonlinear undamped oscillations in the vicinit
of the singular point ay (see Fig. 3.28). The change in the
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parameters of motion of the aircraft in time is analogous to that
shown in Figure 3.31.

Fifth region

Am | < | amy.
lam .| <[ am,] (3.73)/121

Motion in the fifth region is analogous to that in the fourth
region. The distinction consists in the fact that on the branch of
the static curve ¢ (see Fig. 3.28) the singular points of unstable
focus type convert to singular points of stable focus type. In
certain instances, with gradual deflections of the ailerons, motion
relative to the singular polnt ¢ may be realized. Usually this is
assocliated with the small value of the lateral stability mg, when
the aircraft is able to accelerate below large rolling velocities
prior to which there arises a rather large retarding torque relative
to the axis 0Xj;. Motion in the vicinity of the singular point as
is analogous to that shown on Figure 3.31,.

16. Motion of an Aircraft at Large Angular Velocities of
Rotation About the Longitudinal Axis

As was shown above we can discern three basic regions of

values of the angular rolling velocity mx - small, intermediate and
large, in each of which the motion of the aircraft has its own
characteristics. At small angular rolling velocities, in the equa-

tions of moticn we can drop the inertial terms and look at them as
linear equations taking into account if necessary only the non-
linearity of the aerodynamic coefficients. The most complex rules
involve controlled motion of an aircraft accompanied by angular
rolling velocities for which the inertial and aerodynamic moments
have an identical order of magnitude; this 1s the region of angular
rolling velocities which is studied mainly in the present book.

And finally, there is a region of very large angular rolling veloc-
ities which is characterized by the fact that the inertial moments
of the gyroscopic stability of an aircraft with motion having such
angular velocities exceed the moments of the aerodynamic stability.
Such a motion is in a certain sense the limiting motion of the air-
craft with a rolling maneuver and the results obtained in its in-
vestigation assist in the analysis of certain types of motion of

an aircraft at large angular rolling velocities.

Large values of the angular rolling velocity B@ may be assumed
to be those for which the following inequality is satisfied

$x>>max ((:a’ “_)3) ( 3. 74)

If the expression for the larger critical angular rolling
velocity in explicit form is substituted into inequality (3.74) it
is easy to see that this inequality will permit estimating the
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relationship between the values of the aerodynamic and inertial
moments. In fact, let the larger critical rolling velocity be the
value w®, then inequality (3.74) can be rewritten in dimensional
form in the following manner:

(Jy—-/.r)‘-"?r)"‘ mzqSb,. (3.75)

The quantity in the left-hand side of the inequality character-
izes the inertial moment, and that in the right-hand side the aero-
dynamic moment, which act on the aircraft. Inequality (3.75) means
that the basic influence on the motion of the aircraft will be that
of the inertial moments in comparison with which the effect of the
aerodynamic moments of stability is small and can be ignored.

Taking into account the smallness of the aerodynamic moments of
stability in comparison with the inertial moments, using the formu-
las from Table 2, it is easy to show that the static solutions

tend toward the following limiting values when wg > 00:

lim (gg4-agy—>0;

(SIS
x

_lim ) (3.76)

[EIEEN W - N CUNES RN
X X X

—0; }hnl@sgz}hniiséao.

In this case, relationship (3.76) is satisfied for any deflections
of the elevator (&8.) and the rudder (6y), which is explained by
the large gyroscopic stability of motion of the aircraft.

Substituting Expression (3.76) into the eguations of motion
of the aireraft (1.33) as parameters of the undisturbed motion,
let us linearize them and find the equations in variations relative
to the motion including the rapid rotation of the aircraft rela-

tive to the longitudinal axis at an angular rolling velocity w, = Q:

o =
o 4 1AQou, = LORST

(3.77)
— =5
w, — nBQw, =m Yo,
C’l
' “ I ..
@' +pRp - ra=po,;
o (3.78)
(4 p—
B —pQa——= Bopoy;
o ——‘—"x—~ - m3.5
o, m.x Wy ,)L_‘, 2. ( 3.79 )

111




In Equations (3.77)-(3.79) all the variables are variations rela-
tive to their own nominal values

o =0 & — — ) - S
W, = ("Uss‘—(')zs.s_,“ao_!_as's"I’SS_O‘ (3.80)

Equations (3.77)-(3.79) may be integrated in explicit form.
It is easy to see that the equations in practice are divided into
two pairs of linear equations of second order and one equation of
first order, which may be solved sequentially. Solution to Equa-
tions (3.77) does not depend on the remaining equations and may be
written in the following form:

- Ay Aot
‘”y:AIe‘ —l—-AQe’ N

ot 3.81
0, =B + By ( )

The complex-conjugate roots A1, Az can be convenlently deter-
mined by using the approximate formula based on the assumption of
smallness of the coefficients of damping in comparison with the
imaginary part of the root

Lgﬁh%(ﬁ}-#ﬁy)iﬂwszB. (3.82)

The remaining roots of the system of Equations (3.77)-(3.79) with
analogous assumptions may be approximately written in the form

e B
)\3‘432»;—(—% é) 4+ inQ; (3.83)

0 (3.8u)

Equations (3.78) and (8.79) are nonuniform linear equations rela-
tive to the variables_a, B and w,, since we may assume that the
solutions for w, and wgzg are known. Solutions for a and B_depend_
on the change in the variation of the angular velocities wy, and w,
in the process of motion, thanks to which the solution for the
variations of_ the angular rolling velocity w, also depends on the
variation of w, and wgz. Thus the solution for wy and wgz depends on
two roots of the characteristic equation and two constants which
are determined by the initial conditions; the solution for o and B
in the general case of arbitrary initial conditions_depends on
four roots and four constants and the solution for w, already de-
pends on all five roots and five constants. This partial separa-
tion of motions in particular comprises the difference between the
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limiting case of rotation of an aircraft at a high angular rolling
velocity and the general case of motion when the solution to the
linearized equations for all parameters of motion depend on the
five roots and the five constants. Further simplification of analy-
sis of the disturbed motion of an aircraft may be obtained if we
analyze the case when mg = 0. In satisfying this condition, the
solutions to_the equations for variations in the angular velocities
Waes Wy and w, do not depend on the angles of attack and sideslip.
Let us analyze this case in greater detail by looking at motion
in phase space of angular_velocities. In Equation (3.79) we find
the general solution for wg:

$,=$xoe*b‘. (3.85)

Substituting into solution (3.81) expressions for the roots let us
transform the relationship for wy and wyg to the form

v = cpy sin (pQ V AB)t; ( )
- 3.86

__.___,,T{GZ.(.my'[ — —
w,e 2(Zb v =y sin(@Q Y AB) 1+ cppcos 1RV AB) 1.

From Expression (3.86), by carrying out simple computations,
we find

1 (,; o )
T mz%—{ myy T
vy € — =sin(pR VAB)T;
n }
~ ~ 3 (w2 virge) (3.87)
(wz __ u,y) € —=cos (R VAB)T.
‘1 €29 )

Let us introduce new variables which relate the linear functions
and the angular velocities Wy and wg:

Gy —
— = wy;;
cn 41

cn Co2

The latter transformation is feasible to carry out since the motion
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in the phase space of the new variables wyi, wz1, wy is described
by a relationship which is simpler than in the original phase space.
Let us square each of the relationships (3.87) and add them.
Carrying out the substitution of variables in Equations (3.88) we
find the eguations_of the integral curves in phase space for the
variables wy1 and wgi:

‘°§1+“’31=€( bl (3.89)

For each value of the moment of time T (3.89) is the equation of
the circumference. If we exclude the time from Equation (3.89) and
use the solution for w, (3.85), we find the equation for the family
of surfaces in phase space on which the following integral curves

lie.

m X
X
- — _ F”’-.+my
“il%-w2==foQ%J oYy (3.90)
E‘T’x
_ X
mez 4my
Co={w,g) b ¥ (3.91)

For each value of the coefficient ¢y the surface which is described
by Equation (3.90) is a rotational body relative to the axis Owg,.
If the solutions for Wyls, Wzls and
wype are stable, then the motion in
phase space occurs over the surface
of the parabaloid which is tangent
to the origin.

U)x:(”w:(’)zl:O- (3.92)

The diagram of the motion in
phase space is shown in Figure 3.32.

The system of equations of
motion (3.77)-(3.79) has one real
root of Equation (3.84) which deter-
mines the separatrix surface, the
equation of which immediately follows
from the solution for wy in Expression
(3.85).
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:L=0. (3.93)

From Equation (3.93) it follows that the separatrix surface is /126
a plane of the orthogonal axis Owp,. The surfaces which are des-
cribed by Expression (3.90), on which the integral curves are lo-
cated, with an increase in the value of ¢p tend toward the plane
with Equation (3.92) but never reach it. When one of the roots
A3,4 or Ag has a positive real part, the motion is unstable and the
generatrix of the surface which is described by Equation (3.90) has
singularity in the vicinity of the singular point, agreeing with
the origin (Fig. 3.33).

In this case the motion in the separatrix surface will be stable if
m@% < 0 (see Fig. 3.83,a) and unstable if my® > 0 (see Fig. 3.33,b).
Motion in the phase space of the real angular velocities wy, wgz,

and wy has the same characteristics as the motion in space of the
variables wy), wgl, wx. The difference consists only in the fact
that, if in the space wyl, Wzl, Wg, the cross section of the surface
along which the figurative point with the plane of_the_orthogonal
axis Ouwgx moves, 1s a circle then in the space wy, wy, Wg, such

cross section 1s an ellipse. If the aircraft in its inertial and
aerodynamic characteristics is symmetric relative to the axes 0Y

and 0Z, then it 1s easy to show that the coefficient ¢5; in rela-
tionship (3.86) will be equal to zero and the ellipse is degenerated
into a circle.

Now let us proceed to an analysis of the changes in the varia- /127
tions of the angles of attack and side slip of the aircraft with

rapid rolling rotation. Change in the angles of attack and side
slip of an aircraft in disturbed motion is described by Equation
(3.78). Let us look in first order at the motion of an aircraft

in the presence of initial disturbances only in the angles of attack
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and side slip, i.e., when wy(0) = wz(0) = 0. Such a disturbance
can be represented as the effect on the aircraft of a gradual wind
blast of large extent. From expressions (3.77) it follows that the
angular velocities wy and wgz remain identically equal to 0, i.e.,
the longitudinal axis of the aircraft in disturbed motion also
retains a constant orientation relative to inertial space and may
be shifted only by plane-parallel motion. Retention of the invari-
able orientation of the longitudinal axis of the aircraft with
respect to inertial space is explained by the large degree of gyro-
scopic stability.

Since w, = ;z = 0, Equations (3.78) may be rewritten in a more

simple form.

g

cf (3.94)
2 :

For further analysis we have the equation for the angle of bank of
an aircraft

Y’:P‘O (3.95)

In the specific case when

PR : p—,
¢y =—cf=0, (3.96)

the solution to Equation (3.94) has an especially simple form

A= Cos y'*
.o?*h | (3.97)
p=gysiny, |

Let us note that the direct proof is easy to find that the
solution to (3.97) satisfies the system of Equations (3.94) with
the arbitrary function Q(%).

From solution (3.97) it is clear that changes in the angle of
attack and side slip of an aircraft are caused by kinematic re-
lationships (Fig. 3.34), but the angle between the longitudinal
axis of the aircraft and the velocity vector ¢*¥ remains constant.

(3.98)
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In the general case when Equation (3.96) is not satisfied the /128

solution to Equation (3.94), with the proper choice of the beginning
of the time readings, can be written in the following form:

P Re 2 sy (3.99)

B:g?oe

F From expressions (3.99) it is clear that
the solution for a and B is an oscillational
damped process. The oscillational character
in the change of the angles o and B8 is due to
their kinematic relationship with ¢%, i.e.,
the angle between the longitudinal axis of the
aircraft and the velocity vector. Furthermore
due to the effect of aerodynamic 1lift the air-
4 craft begins to "drift" along the current and
v the angle ¢% between the fixed axis of rota-
tion of the aircraft and the velocity vector
in inertial space 1s decreased.

NN

=V

Fig. 3.34
Let us look at the motion of an aircraft
in more detail. We determine the projections of the forces which
act on the aircraft for the axes OF, and OF; that are associated
with the center of mass and are shi%ted in a plane-parallel direc-
tion along with the aircraft (see Fig. 3.34):

Fy:dﬁcosy——zlﬁﬂY:} (3.100)

F,=Y,siny+4Z;cosy,

where Y; and Z; are the projections of the aerodynamic forces on
the body axes of the aircraft.

With an accuracy up to a constant factor, from Equations (3.99)
we find expressions for the projection of forces on the body axes
of the aircraft 0¥ and 727 in the following form:

Yi=c,a=Ajcosy-e

a (3.101)
(59

Zy=clp=[Asiny-} Ajcosyle °*

If we substitute expressions (3.101) into Equations (3.100), we find:
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Fy=[A;cos?y— Ajsin’y— A sinycosy]e
(3.102)

R e Vp—

F,=[A§cos ysiny-}- Ajcos ysiny-- A] cos? y]‘e—

From Expressions (3.102) it is clear that the terms, which are /12¢
in the bracket in the expressions for F, and F,;, are periodic N
functions of the angle of bank y with tzeperiod m. The most simple
form of Formula (3.102) is obtained in that case when the carrier
properties of the surfaces of an aircraft are identical in the
planes X10Y; and X10Z; (see Fig. 1.2), i.e., the following equations
is satisfied.

e, =-~cf.
(3.103)

We can show that under the condition of (3.103) the relationships

A;:-AE
A1 =0, (3.104)
are valid, whence we can obtain directly
s
Fy=Ate vV F,=0, (3.105)

From relationships (3.105) it follows that in this case the
motion of an aircraft occurs in such a way that the increase in the
angle of attack which arises after the effect of the disturbance
decreases exponentially with time. Physically this can be explained
by the "drift" of the rotating aircraft along
the direction of the influence of the wind

By disturbance with the retention of an invariable
. orientation of its axis of rotation relative
N . .
Z \\\ to 1lnertial space.
\\ For an aircraft with an arbitrary relation-
%ﬁg ship between the derivative ¢2 and cg, changes
7 - in the functions in the brackets of Formulas
2 (3.102) are somewhat more complex and may be
\J >> illustrated on Figure 3.35. The aerodynamic
L/ﬁ force which acts on the aircraft in this case,
v changes in value and direction. With respect
to such a variable character of the effect of
Fig. 3.35 the aerodynamic force, the motion of a rapidly



rotating aircraft in the general case acted on by a constant wind,
directed orthogonal to the axis of rotation of the aircraft will

be curvilinear, unlike the rectilinear "drift" along the current of
a symmetric missile.

Specific cases of motion of a rapidly rotating aircraft show
that two types of motion are observed, the occurrence of which
depends on the effective disturbances. If the disturbances act
on a rapidly rotating ailrcraft based on the angles of attack and
side slip, then its disturbing motion is reduced to such a change
for which the longitudinal axis of the aircraft moves in a plane-
parallel direction and does not change its angle of orientation. /130

If the disturbances lead to a change in the angular velocity then
the axis 0X; of the aircraft begins to precess relative to the
vector of the flying speed. Such cases are analyzed in greater
detail in Chapter VII relative to the motion of a symetric rotating
missile. It should be noted that the problem on the motion on a
rapidly rotating aircraft relative to the longitudinal axis is
interesting not only as an extreme case of the maneuver of an air-
craft with aileron control but also has direct application to the
analysis of the dynamics of a rapidly rotating missile with aero-
dynamic and inertial nonsymmetry.
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CHAPTER IV

DYNAMIC CHARACTERISTICS OF AN AIRCRAFT WITH SIMULTANEOUS
CONTROL BY AILERONS AND ELEVATOR

Above we obtained the basic relationships which permit finding /131
the values of the parameters of motion of an aircraft representing
steady motions. These relationships permit analyzing and obtaining
basic qualitative concepts as to the motion of an aircraft in
carrying out specific maneuvers. In the present chapter we study
the properties and the characteristics of an aircraft with simul-
taneous controcl relative to the lateral and longlitudinal axes (84,

§c). Chapter V is devoted to analyzing the motion of an aircraft
with simultaneous control relative to the latitudinal and vertical
axes (65, 6,n). In each of the chapters we analyze the following

basic questions:

1. The physical picture of the motion of an aircraft is
analyzed.
2. The characteristics and differences in spatial motion of

an aircraft are determined in comparison with isolated motions,
and their causes are analyzed.

3. The stability of motion of an aircraft is analyzed both in
the process of carrying out the maneuver and with the placement of
the controls into a neutral position (with cessation of the maneuver).

4. The dynamics of an aircraft are studied in carrying out a
maneuver, and the G-forces which act on the aircraft are evaluated.

From this last problem the basic result can be obtained by
numerical calculation on simulators or on digital computers.

The dynamics of an aircraft during rolling maneuvers depends
substantially on the relationship between the critical rolling
velocities corresponding to a yawing motion (wB) and a pitching
motion (w ). For the majority of modern aircraft it is character-
istic that at subsonic flying speeds wg > wgy, and at supersonic_
speeds, the sign of the equation changes to the opposite (wB < wa)
Below we look at both of these cases.
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Even from the results obtained in Chapter III it is obvious
what a substantial influence is exerted on the rolling maneuvers
of an aircraft by the excess lateral stability. 1In analyzing /132

specific rolling maneuvers, especially at subsonic flying speeds,
in certain instanges the dependence of the lateral stability on the
angle of attack mgz(a) exerts a qualitative influence on the dynamic
characteristics of the aircraft. In this respect in each of the
chapters we carry out an analysis of the influence of this function.

17. Characteristics of Rolling Motion of an Aircraft with
Simultaneous Control by Ailerons and Elevator

In studying the type of singular points, we found that as a
function of the parameters characterizing the control of the air-
craft in the longitudinal plane [of its angle of attack at the be-
ginning of a maneuver (ag) and of the increase in the angle of at-
tack during pitching (Aop)] the singular point to which the parame-
ters of motion of the aircraft tend, in proportion to damping of
the transient condition, will lie in the phase space either nearer
to the axis w, = 0 than does the first critical angular rolling
velocity or beyond the first critical velocity. From all of the
numerous types of rolling maneuvers A - F (see Sections 13 and 15),
we can distinguish two basic groups which differ in the character
of change of the static curve Amy = f(wg,) in the range of angular
velocities less than the first critical.

0 < Jo,| < min (o, ©p). (u.1)

To the first group belong those types of maneuvers for which
all the singular points in the region of angular velocities satis-
fying inequality (4.1) are represented by a periodically stable
solution. These are maneuvers of type C, E, and F (see Section 13
and Fig. 3.12). To the second group belong those maneuvers for
which in the range of angular rolling velocities (4.1) there are
eight periodic unstable singular pcints [these are maneuvers of 4,
B and D types (see Fig. 3.12)].

For maneuvers of the first group the behavior of the aircraft
in controlled flight is characterized in first order by the seeming
effectiveness of the ailerons, in proportion to the approach of
the angular rolling velocity of the aircraft to a critical value,
beginning to drop, and significant increases in the aileron de-
flections lead only to a small increase in the value of the angular
rolling velocity w, (Fig. 4,1). The type of transient conditions
for the basic parameters of motion of an aircraft with a gradual
deflection of the ailerons carried out from the conditions of flight
with the G-force ny = 2 is shown on Figure 4.2, The parameters of
motion of an aircraft tend, in proportion to damping of the oscil-
lations, toward a certain steady value (wgss, Gggs Bsgs» etc), which
are determined by the static solutions, and the transient conditions
of the basic variables have a significant overshoot relative to the
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steady values. In carrying out maneuvers of the first group the
rolling motion of an aircraft is accompanled by large changes in
the angles of side slip and attack, and significant G-forces may
affect the pilot and the design of the aircraft.

The basic property of maneuvers of the first group, the seeming
decrease in effectiveness of the ailerons with increase in angular
rolling velocity wg, is explained by the simultaneous effect on the
dynamics of the aircraft of the lateral stability (mg) and the in-

ertial cross couplings. Such an influence can be explained with
the help of the following simple discussion. Due to the inertial
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interaction of the longitudinal and lateral motions the effective
degree of the static stability of an aircraft with motion at an
angular velocity w, seems to decrease, as a result of which con-
ditions are created for the development of an angle of side slip.

In turn, the angle of side slip, due to the presence of lateral
stability (mg < 0) leads to the appearance of a rolling moment which
is built up with the rolling moment from the ailerons and affects
the size of the angular rolling velocity w,; when the axis of the
aircraft in the beginning of the maneuver 1s located above the veloc-
ity vector, such an influence appears in the deceleration of rota-
tion of the aircraft. This property of the rolling maneuver is
characteristic both for flight at subsonic speeds when w, << wg, and
for flight at supersonic speeds when wg > wg - Especially strongly
does the seeming limitation of the effectiveness of the ailerons
appear with the relationship of the critical rolling velocities

when wg <<uwg, i.e., at supersonic speeds. This is due to the fact
that with such a relationship of the critical velocities the air-
craft has a lesser stability in yawing and with a rolling maneuver
can easily escape to large angles of side slip B. Let us look in
somewhat greater detail at the motion of an aircraft with deflection
of ailerons from the conditions of horizontal flight. At the be-
ginning of the transient condition after the ailerons are deflected,
the rotation of the aircraft occurs relative to the major inertial
axis 0X;, as a result of which the aircraft rotates at the angle /134
of bank y, its angle of attack a is somewhat decreased and the
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angle of side slip B appears due to the kinematic relationship be-
tween oo and B during the roll which may be determined from the ap-
proximate relationship (Fig. 4.3).

Ryo=2 B==auv. (4.2)

S

43 rd/s
V\J /sec v From relationship (#.2) it

S S — ¢ follows that if the initial value

gz vad_ o~ of the angle of attack ag is posi-
LT ] r tive, then with rolling the side

slip of the aircraft is developed

0g¢ rad X with the same sign as the angular
" rolling velocity w,. With motion

0 tsec of the aircraft with side slip the

moment of lateral static stability
10 J/\\,/W\//\\//\\//\\// mB appears which counteracts its
ra /Sec &L . .
rolling rotation. The process
%ﬁ?;ﬁ:;fa?cfzﬁjxh\ﬁfh*dci’ described above can be traced on
Figure 4.2, in particular, the
5 decrease in the angle of attack o
/rad/SeC /\\//3\3/ at the beginning of the transient
condition, the development of the
ﬁ angle of side slip, ete. After
¢ tsec damping of the transient condition
with steady rotation of an aircraft
Fig. 4.2. acted on by the deflected ailerons,
its axis 0X; and the vector of
total angular velocity retain their mutual position unchanged and

move along a cone around the vector of flight velocity (see Fig.
4.3,e¢), i.e., a regular precession of the aircraft is observed.

SR o
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For rolling maneuvers of the second group (maneuvers of 4, B
and ¢ types) we find it to be characteristic that there is a disrup-
tion of the continuous dependence of the angle of rolling velocity /135
of the aircraft on the angle of alleron deflection with an increase
in the aileron deflection (685;) greater than a certain value (65 >
8§13 Fig. u.u). As a result, in the characteristics of the motion
of an aircraft during rolling maneuvers we observe substantial
changes in the increase of aileron deflection. With small deflec-
tions of the aileron, the aircraft rotates at an angular rolling
velocity less than the first critical and retains the usual char-
acteristics of controllability. With relatively large deflections
of the ailerons, the angular rolling velocity of the aircraft, due
to the effects of side slip at the moment of lateral stability,
begins to grow substantially and exceeds the value of the second
rolling velocity (Fig. 4#.5). In this case, placing the ailerons
into a neutral position, or even changing the sign of their deflec-
tion, does not always end the rolling rotation of the aircraft. A
practical loss in controllability of the aircraft for the ailerons
is observed, the so-called system of "inertial rotation" of the
aircraft. The angular rolling velocity, after placing the ailerons
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into a neutral position, is retained due to the development of the
angle of side slip and the effect on the aircraft of the moment of
lateral stability. From the condition of retaining the angular
rolling velocity wg ~ Wg2 opits it is easy to find the value re-
guired for this angle of side slip.

-~ .

T rogcrit

_TB‘ .
m.l’

B

Fig. 4.3.

According to the value of the angle of side slip B, the
lateral G-force can be approximately evaluated which affects the
aircraft when it enters into the system of inertial rotation.
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In this expression the empirical coefficient kyyyz takes into
account the dynamics of the transient condition [the overshoot for

the angle of side slip (krrgz ~ 1.5 - 2)1].
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The character of the motion of an aircraft during rolling
maneuvers carried out from conditions of flight with a negative
G-force (og < 0), depends on the simultaneous influence on the
simultaneous influence on the dynamics of the aircraft of the in-
ertial cross coupling and the lateral stability mg which in this
case is not decelerated, but on the contrary facilitates growth
of the angular rolling velocity. The occurrence of the initial
side slip, which facilitates growth of the angular rolling velocity,
is caused by the kinematic relationship between the angles of at-
tack and side slip during rolling. In fact, as noted above, at
the first moment after deflection of the ailerons, rotation of the
aircraft occurs relative to the major inertial axis 0X; and the air-
craft rotates at an angle of bank y, due to which there appears
the angle of side slip B, which is determined by approximate re-
lationship (4.2). The angle of side slip B creates a moment rela-
tive to the longitudinal axis 0X;:

AM, =M -ayy. (4.3)

If, during the rolling maneuver, the initial angle of attack of the
aircraft ag is negative the supplementary aevodynamic moment AMy
caused by the development of side slip has the same sign as the
moment from the aileron. After damping of the transient condition

a regular precession of the aircraft is' established around the
velocity vector V, in which case the angle between the major in-
ertial axis 0X; and the vector of total angular velocity of the air-
craft remains constant (Fig. 4.6).

The mutual position of the major inertial axis 0X; of the air-
craft and the vector of total angular veloclty depends on the size
of the angular rolling velocity. If the value of the angular
rolling velocity satisfies the inequality wg < wi.pjts, then the
steady value of the angle of attack of the aircraft is negative,
if though wyp > wocpits, then the angle of attack of the aircraft is
positive. In both cases the aircraft, prior to the rolling
maneuver, was trimmed at a negative angle of attack. With respect /138
to this latter result (the dependence of the angle of attack on
the size of the angular rolling velocity), it is necessary to make
a more detailed analysis of the reaction of the aircraft to deflec-
tion of the elevator during the rolling maneuvers.

18. Reaction of an Aircraft to Deflection of the Elevator
during Rolling Maneuvers

Let us look at the dependence of the reaction of an aircraft,
in angle of attack for deflection of the elevator, on the size of
the angular rolling velocity during maneuvers. The sought relation-
ship between a and Amzée is determined by the static derivative

A%ée, the formula for which was given in Table 2. Let us write

this relationship and determine its basic properties.
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For simplification, if we ignore the computation of the in-
fluence of damping and take into account the expression for the
free term of the characteristic equation Ay (see Table 2) we find

A°. —_9ss 1

mﬁe A—-;’-lz _(_;;b_ A‘UI)E’) . ( 4.5 )

For relationship (4.5) there follows the quite interesting
result which includes the fact that the reaction of the aircraft in
angle of attack (normal G-force) to deflection of the elevator
during the rolling maneuver in first order depends on the relation-
ship between the angular rolling velocity and the critical angle
of velocity corresponding to the pitching motion (wyg). In those
cases when the value_of the angular rolling velocities satisfies
the inequality wg < wg, with the rolling maneuvers normal agreement
is retained between deflection of the elevator and ingrease_in the
angle of attack of the aircraft. In those_ cases when wgy > wy, the
sign in the relationship between agg and Amy is changed to the
opposite. The change in the agreement of the signs of agg and Amg,
is explained by the fact that the motion of the aircraft which is
first trimmed at a positive angle of attack, with an angular rolling
velocity exceeding the value of the second critical velocity, oc-
curs with a negative normal G-force and with trim of the aircraft
at a negative angle of attack with a positive G-force. Let us look
at the reasons for such a change in the relationship between the
increase in the angle of attack agg and Amé. As noted in Section
6, the motion of an aircraft with an angular rolling velocity due
to the kinematic interrelationship between o and B in a certain /139

sense 1is analogous to the motion in the presence of an external
periodic effect. When the value of the angular rolling velocity
approaches the natural frequency of the longitudinal oscillations
of an aircraft, there begins a phenomenon which is similar to
resonance. Just as with any rescnance the reaction of an object to
disturbance at a frequency less than the resonance frequency has a
regular sign and at higher frequencies there is a phase lag by 180°
and consequently the sign of the reaction changes. An analogous
Phenomenon is observed also during the rolling maneuver of an air-
craft. At this time there is still no angular rolling velocity less
than the resonance frequency equal to the critical rolling velocity
(wg)s; the reaction of the aircraft, for the angle of attack, to the
external moment Amy has a normal sign; with an increase in the
angle of velocity wge the sign of the increase is changed to the
reverse. It is obvious that similar such properties will be pos-
sessed by the reaction of the aircraft during the angle of side
slip with control by the rudder. (This problem is studied in Chap-
ter V).
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In all of the discussions given above the presence in the air-
craft of damping has not been taken into account since it somewhat
complicates the picture of the motion presented above. 1In fact,
it is easy to prove that due to the presence of damping, in the
case when the inequality wg < wg is satisfied, the free term of the
characteristic equation Ag vanishes at values of the angular rolling
velocity wg larger than the numerator of expression (4.4) and when
EB » wy - at smaller values of wy. As a result, the form of the
function A%Ge(wx) depends on the relationship between the critical

angular rolling velocities Eu and EB (Fig. 4.7). On Figure 4.7 the
dotted line shows the respective functions for an aircraft not pos-
sessing damping. We must additionally note that the reaction of

an aircraft for the angular pitching velocity wyz; to deflection of
the elevator retains the regular agreement for all values of the
angular rolling velocities. 0On Figure 4.7 it is obvious that in
the case when the inequality wyg < wp is satisfied, the change in
the angle of attack of the aircraft during a rolling maneuver grows
substantially with an increase in the angular rolling velocity.
With such a relationship of the critical velocities the rolling
maneuvers of an aircraft are accompanied by large normal G-forces.
In the same case when wpg << wy, the change in the angle of attack

of an aircraft during rolling maneuvers with angular rolling veloc-
ities less than the first critical are practically independent of
the size of w,. In these cases the rolling maneuvers are accompanied
by small changes in the normal G-forces.

Thus with the motlion of an angular velocity exceeding the
second critical which may be valid when the aircraft enters into
a system of inertial rotation, to decrease the normal G-forces the
pilot must operate the elevator directly opposite to the normal,
i.e., with motion involving a positive G-force, to decrease it he
must move the control stick toward himself, whereas with a negative
G-force he must move 1t away. It is obvious that such actions are
unusual for the pilot and complicate, and sometimes make impossible,
piloting the aircraft. An additional complication is the fact that /140
the aircraft under conditions of motion of inertial rotation
(wp > wyerit) has also a reverse reaction for the angle of sideslip
to deflection of the rudder.

Let us look briefly at an evaluation of the angles of side
slip which occur during a rolling maneuver with simultaneous de-
flection of the elevator. The physical reasons for the occurrence
of an angle of side slip during a rolling maneuver and deflection
of the elevator are due to the gyroscopic properties of a rotating

aircraft and are briefly analyzed in Section 6. Analogous to a
gyroscope, under the influence of the moment Am, the aircraft pre-
cesses in an orthogonal direction. Using Table 2 let us look at

the expression for the static derivative Agﬁe’ which relates the

value of the angle of side slip B to the moment of the elevator

Ar?z(se:
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From relationship (4.6) it follows that between the values
AEZ and Bgg there is a unique relationship that is independent of
the relationship between the critical angular rolling velocities of
the aircraft (see Fig. 4.8).

An analogous dependence of the increase in the angle of attack /14l
agg and side slip By, on the value of wyp is valid if we look at
rolling maneuvers carried out from the conditions of horizontal
flight with an angle of attack ap (see Table 2).

On the basis of the discussion given above we note the fol-
lowing basic rules for the development of angles of attack and side
slip of an aircraft during rolling maneuvers. During rolling ma-
neuvers of an aircraft when the inequality wyg » wg is satisfied
(the relationship is characteristic of supersonic flying speeds)
and motion occurs at an angular rolling velocity less than the first
critical, changes in the normal G-forces (angles of attack a) are
small and the basic loads acting on the aircraft are associated
with the development of lateral G-forces (angles of side slip B).
During rolling maneuvers when wg < wg (the relationship is charac-
teristic of subsonic flying speeds), both the angles of attack and
side slip may grow substantially, i.e., the normal and lateral G-
forces.

It then follows that the reaction of an aircraft for the angle
of attack to deflection of the elevator during rolling maneuvers
depends only on the size of the deflection of the elevator and the
value of the angular rolling velocity, but is independent of the
direction of roll (the sign of the angular rolling velocity). This
is explained by the fact that the dependence A%ée (Ago) is an even

function of the angular rolling velocity 6@ (see Table 2).

19. Effect of the Dependence of Lateral Stability on the Angle
of Attack for Control of an Aircraft by Ailerons and Elevator.

One of the basic assumptions which we find ourselves confront- /142
ing concerning the problems solved above was the assumption as to
the linearity of the aerodynamic coefficients of the aircraft. In
fact, as we know, an entire series of aerodynamic derivatives of
stability of the aircraft depend substantially on the angle of at-
tack. In particular, the derivatives
of stability m%, mB, mf, mge may depend
substantially on t%e angle of attack of
an aircraft,.

Not all such linear dependences
exert a significant influence on the
motion of an aircraft during rolling
maneuvers, however the effect of several
nonlinear dependences of the aerodynamic
coefficient may qualitatively change the
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overall picture of its motion and must be taken into account in the
calculation. The most substantial in this respect is taking into
account the nonlinear dependences of the aerodynamic derivatives
which enter into the equation of moments relative to the longitudinal

axis of the aircraft (0X;). This is caused by the large effect on
the motion of an aircraft of the value of the angle of rolling
velocity. One of the basic aerodynamic characteristics of an air-

craft is the derivative of the moment of the lateral stability for
the angle of side slip mg, which especially at subsonic flying

speeds may substantially depend on the angle of attack of the air-
craft. This dependence in certain instances exerts a qualitative
influence on the characteristic motion of the aircraft during rolling
maneuvers.

Let us look at the dynamic characteristics of an aircraft with
control by the ailerons and elevator in those cases when the deriva-
tive of the moment of the lateral stability mg depends on the angle
of attack. The substantial dependence of the moment of lateral
stability on the angle of attack 1s especially characteristic for
flight at subsonic speeds; at supersonic speeds it appears consider-
ably more weakly or simply does not occur at all. A typical de-
pendence mg(a) for an aircraft with swept wings is shown on Figure
4.9. A characteristic of this dependence is the fact that the
derivative of the lateral stability mg is negative for stable air-
craft; at negative angles of attack the sign changes to the opposite
and becomes positive. Physically this phencmenon is associated
with the characteristics of the manifestation of the forces on a
swept wing and may be explained by the following discussions. Let
us look at a simplified picture of the occurrence of a lateral /143
moment on an aircraft with a swept wing. With the motion of an
aircraft with side slip (Fig. 4.10), its right and left wings have
different effective sweeps with respect to the current. In this
case the wing on which the aircraft slips has a smaller sweep and
consequently the component normal tc the wing of the speed of the
current which creates the basic part of the 1ift grows. As a result
the size of the 1ift on the wing with the smaller angle of sweep
with respect to the current grows in comparison to its own mean
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value and on the wing with the larger angle of sweep it decreases,
thus leading to the appearance of a lateral moment. From the dis-
cussions above it follows that the sign of the lateral moment de-
pends on the sign of the mean value of the 1ift of the wings during
side slip. For a positive angle of atttack (ag > 0) mg < 0 and for
a negative angle of attack (ag < 0) mg > 0, The influence of the
fuselage, a lateral V-wing and other factors which were not taken
into account above somewhat complicate the picture of the manifesta-
tion of the lateral moment, however the basic properties of the
function mx(a) in such case are usually retained.

In the present section, in analyzing the spatial motion of an
aircraft the nonlinearity is taken into account only of the aero-
dynamic moment of the lateral stability mg (a) although we know
that the other aerodynamic moments and forces in a number of cases
depend substantially on the angle of attack. However, these non-
linearities of the coefficients as a rule lead mainly to a quanti-
tative change in the solutions to the equations of motion. In a
certain sense the exception consists of aerodynamic moments which
enter into the right hand side of the equation for determining the
angular rolling velocity. In fact the presence of lateral stability
of an aircraft may in some instances lead either to a loss in the
stability of motion of an aircraft in rolling, or to the appearance
of a stable rotation when the ailerons are placed into neutral
position. As was shown above the existence in the aircraft of a /1lhh

moment of lateral stability mg leads to the appearance of substantial
differences in the behavior of an aircraft during rolling maneuvers
as a function of the conditions of its trim and the longitudinal
plane. The dependence of the value mB on the angle of attack a
additionally complicates the picture of motion of an aircraft during
rolling. With respect to this, in the present section in analyzing
the control of an aircraft with ailerons and elevator taking into
account the function mB(a) the major attention will be paid to in-
vestigating the possibilities of loss of controllability of the air-
craft involving the ailerons during strong rolling when the angle

of rolling velocity exceeds the value of the second critical, i.e,
to an analysis of the possibility that systems of inertial rotation
will appear. The investigations will be carried out for two cases:
the case when the critical angle of rolling velocity corresponding
to the pitching motion (m <« wB) is the smaller, and the case when
the smaller critical ve1001ty is determined by the yawing motion

wg > NB) As the results of the investigations carried out below
will show, the dynamic characteristics of an aircraft in these two
cases are different.

The nonlinear function mg (B, a) will be approximated by the
following approximate formula which usually describes the character-
istics of the lateral stability of the aircraft quite well.

m, (8, a) =(W£0+ m;"a) 8.
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Analysis of the possibility that systems of aircraft motion
will develop with losses in controllability by the ailerons (systems
of inertial rotation) will be given in two stages. First, let us
cite criteria which permitted evaluating the possibilities of the
development of such motion in a simplified formulation when it is
assumed that mfy is small (mBo ~ 0) and mg(a, B) = m%P.0-8 and then
in the next section we look briefly at the possibilities of refining
the criteria obtained in the general case of an arbitrary mg,.

Characteristics of Control of an Aircraft with
Ailerons when wy < wg

The relationship between the values of the critical rolling
velocities when the inequality wy <« wg is satisfied, usually corre-
sponds to flight of an aircraft at subsonic speeds. As was shown
above, a quite convenient characteristic which permits finding the
basic characteristics of controlled flight of an aircraft during
spatial maneuvers is the dependence of the required deflection of
the ailerons on the size of the angular rolling velocity. Such a
dependence in particular permits investigating as to whether the
controllability of the aircraft is maintained when the ailerons are
placed into neutral position or whether instances are possible when
the angular rolling velocity in such_cases is not decreased to a /145

zero value. To find the functions Amx(6§), we nsed the formulas
for the equilibrium of moments relative to the longitudinal axis.

-

Amxz_[mzx@x—]—_ﬁiﬂ(ao—{—asgﬂss—i—ﬁEOBSJ_ (4.7)

The values ogg, Bgs may be found using the "static derivatives",
the formulas for which are given in Table 2, from the following
relationships:

GS?AZO'QO‘!_A’"S-e'AmZBe+A7"61;Amy§r' ..y (4.8)

. _ —
Bs 5= Ak~ + A?nae' Amzbe+ A?M,Il Am-'/alr. (4.9)

A . (In relationships (u4.8), (4.9)
I only the basic terms are re-

1 tained). Examples of the

| dependences of the static

] derivatives Ago and 4fg on

f 405|_] wg the size of the angular

,i \ rolling velocity are given

ns on Figures 4.11 and 4.12.

] The character of the change

in the static derivatives

Fig. 4.11. A%5e’ A%de are analogous.
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The form of the dependemnces Amg(wy,) is determined by whether or

not the lateral stability of the aircraft mg(a) facilitates develop-
ment of roll or, on the contrary, inhibits it. Taking into account
that usually the derivative m%s < 0 (see Fig. 4.9), from Formula
(4.7) is easy to determine the conditions for which the lateral
stability facilitates the development of roll of an aircraft. It

is obvious that only under such conditions is a system of inertial
rotation possible. In order that the lateral stability of the
aircraft facilitate the development of roll, it is necessary that
the moment from the lateral stability of the aircraft have the same
sign as the moment from the ailerons, which does happen when the
following relationship is satisfied between the angles of attack o /146
and side slip B of the aircraft (in a steady system between oagg and

Bss):

signe,-(a—a") B <0, (4.10)

Where (-a%) is the angle of attack 1iIn which mg(—a*) = 0 (see Fig.
4.9).

The relationship between
the angles o and B, for which
the inequality has the oppo-
.site sign, corresponds to a
deceleration effect of the
lateral stability of the air-
craft on the angular rolling
velocity. From Figures 4.11
and 4.12, it follows that
when the value a¥® is not very
high (mxo ~ 0), condition
(4.10) for the angular rolling
velocity near both to the

Fig. 4.12, first and second critical

rolling velocities, is not

satisfied either for such values of the original trim angle of at-
tack ag (the same is true also for any value of Amé&_ ). From this
there follows the quite important conclusion that in the range of
spatial motions of an aircraft with angular rolling velocity wgx >
EB there may be no singular point when Amyg = 0 and only one stable
singular point at the origin when wy, = 0. This means that regard-
less of the position of the elevator during the time of the maneuvers
and the size of the angular rolling velocity, placing the ailerons
into neutral position will stop the rotation of the aircraft. More-
over from Figures #4.11 and 4.12, it follows that for all rolling
maneuvers the lateral moment due to the development of angles of
attack and side slip located in a given relationship inhibits the
development of the angular rolling velocity. As a result the
static dependence Aﬁi(aé), both for positive and for negative trim
angles of attack of the aircraft, at the beginning of the maneuver
has for all angular rolling velocities less than the first critical

134



a positive derivative_aAﬁé/aaé. On Figure 4.13 are shown examples
of the functions Amgx(wy,) for different conditions of trim of the
aircraft.
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Let us look briefly at the characteristics of the spatial
motion of an aircraft with deflection of ailerons carried out from
the conditions of horizontal flight (Fig. 4.14). At small angles
of deflection of the ailerons, the steady value of the angular
rolling velocity does not exceed the value of the first critical,
i.e., sclutions for the first branch of the static curve Amg(wy,) is
realized. However, at larger deflections of the ailerons, it is
possible to realize a solution of the second branch of the static
curve which corresponds to rotation at an angular rolling velocity,
exceeding the second critical. Computations indicate that placing
the ailerons into neutral position stops the rotation of the air-
craft (Fig. 4.15). Figure 4.16 shows examples of transient con-
ditions for the basic parameters of motion of an aircraft during
entry into roll from the conditions of flight with negative G-force
(ag = ah.f./2). It is easy to see that the "escape" of the air-
craft to large angular rolling velocities, exceeding the second
critical, in this case 1s significantly more simple than during
rolling maneuvers with positive original G-forces (explained by the
small value of the excess lateral stability of the aircraft at the
beginning of the maneuver). In the example under analysis

i(-%9=0
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In this case, just as during rolling maneuvers carried out
from the conditions of horizontal flight, placing the ailerons into
neutral position will stop the rolling rotation of the aircraft
(Fig. u4.17).

Characteristics of Control of an Aircraft by the Ailerons
when wg > wg

Relationship of the critical rolling velocities when the in-
equality wg » wg is satisfied is characteristic for the flight of an
aircraft at supersonic speed, however under certain conditions it
may also be valid at subsonic flying speeds. Typical functions of
the derivatives A%y and Ago for this case are shown in Figures u4.18
and 4%.19. Taking into account condition (4.10), from analysis of
the curves given on Figures 4.18 and 4.19, it follows that with an
angular rolling velocity exceeding the second critical, the lateral
stability of the aircraft during the rolling maneuver facilitates
the development of roll at all possible longitudinal trims of the
aircraft (both when ag > 0, and when apg < 0). (An example of the
function Amg(wy,) is shown on Figure 4.20). This leads to the fact
that, regardless of the position of the elevator (AmSg) during the
time of the rolling maneuver for which the angular rolling velocity
exceeds the value of the second critical velocity, placing the
ailerons into neutral position will not always stop rotation. In
some instances it is possible for the rotation of the aircraft to

ahf

) %== 785" 5 =0
AN |- | /] N

N e VM EAE

O T I TV I ] YRRy
~g,05L 5 tsec-ﬂ,l’.ﬁ'}.

i ] - ) 5 tsec
"7.0—Eau / 0 7

o0 Y s s B 2w,/
wr i | g S e
Wy - (5 !
\VAsRa==c e (NRNS
B Br \\ /
GoSTA A | GO A A |
/ I 0/ M 1‘\
[ {/[‘ ] / N N 4 f~—1
L v | ] L/

o__l I3 tsec 0\ 5 tsec
e AL e el
zp \wﬁ___/_________ wz_\l;"ﬂ_L [ [___ | /150

N i _
N AN
] hY)
Fig. 4.17

137




.18.

Fig.

;
——
13
——
! o
RS
=
———— X
—
llrolv[rlr'[[.
—— b
. ' S

— _wa
—_—
Tlflflﬂﬁfrﬁm
S -

———e e |

4
07

a0

.19

Fig.

.20,

Fig.

138



be maintained during the rolling with the ailerons placed into

neutral position (85 = 0), usually accompanied by large longitudinal
and lateral G-forces. Mathematically this is explained by the pres-
cence of a stable singular point when Amyz = 0, the angular rolling

velocity wg in which exceeds the value of wg.

The form of the transient conditions with gradual deflection

of the ailerons is shown on Figure 4.21. From Figure 4.21 it is
obvious that the aircraft during rolling maneuvers carried out from /152
conditions of flight with a negative angle of attack (ag = -ap,f./2),

converts easily to a large angular rolling velocity.

%7 S g oy
a o T L
OrE —% - =
<G 5 1x o, WP BZ RN
gosF NN\ /”\< ~NY
A NY/RYAV -
0 _ \s N 0,05 —
N\ tsec”\ 5T | Mltsee
» =40 SR
N e e e J,__ia__ LR
4
wr :“ﬁ\_‘f 3\ ,/3\ 3 :x‘“’“__ B Iy o
\Jf T T~/
[ N
| 1
o
—drr
L
I NN Jtsec
ﬁ|/>\>< "/”'4 ]
[ / —t -
o050 \
A L

]
§ S
T
?A'e'__im
1?2
[
\+*\ﬂ
! iffs
L 1
LT

Fig. 4.21

In this case in certain instances placing the ailerons into neutral
position will stop the rotation but in some instances it will not.
We can note the following law. If at the moment of placing the
ailerons into the neutral position, from condition (%.10) it follows
that with running values of the angles of attack o and side slip B
the lateral stability of the aircraft facilitates development of
rolling, placing the ailerons into the neutral position will not
stop the rotation. The rolling rotation of the aircraft is main-
tained due to the lateral stability of the strongly rotating side
slip B. It is obvious that the side slip of an aircraft, for re-
taining the mean value of the angular rolling velocity constant, a
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moment must be created equal to the moment from the ailerons.
Hence it follows that the mean value of the angle of side slip /153

after placing the ailerons into neutral position will satisfy the
inequality

B >—_——.
Yav T nf(a) (4.11)

In this case in the transient condition we may observe significant
overshoot for the angles B8 and a._ The values Bgg and agg corre-
sponding to the motion with w, > wg and Amgy = 0, are found with the
help of the curve of the static solutions as B and a for that_value
of the angular rolling velocity w when the static curve Amg(wg,)

intersects the axis Am, = 0.

The motion of an aircraft with wg > wy, (w, is greater than the
second critical rolling velocity) is characterized by the reversal
of the sign of coupling between Aagg and Am8, (or ap) to the oppo-
site, with respect to which the motion of the aircraft trimmed
prior to deflection of the ailerons and the beginning of the rolling
maneuver in horizontal flight (my,y = 1) is accompanied by the
development of negative angles o% attack (negative G-forces). With
the escape of the aircraft into angular rolling velocities exceeding
the second critical, from conditions of flight with negative origi-
nal G-force and the retention of the stabilizer during the entire
time of the maneuver in this trim position, a positive angle of
attack is developed.

20. Derijving the Necessary Conditions for which a System
of Inertial Rotation of an Aircraft is Possible

Let us look at a somewhat more general form of the condition
for which a system of inertial rotation of an aircraft is possible
in the case of arbitrary relationships between mgo and mgs.

For the existence of a system of inertial rotation of an air-
craft the following are necessary:

(a) The existence of a zero in the function Amx(aé, ag, Amy)
when wy > woopits

(b) A static stability of motion in the vicinity of the
singular point;

(¢) A dynamic stability of motion "in the small';

(d) Dynamics of the process of control (speed of readjusting
the controls, etc.); for which the stability of motion is retained
"in the large" in the vicinity of the singular point.
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The first two conditions are necessary but not sufficient
conditions for the existence of systems of inertial rotation, i.e.,
for certain processes of control of an aircraft a system of inertial
rotation may also not be realized regardless of the satisfaction
of these conditions, for example with slow deflections of the
ailerons the system of inertial rotation may be realized but with
fast deflection may not be realized, etc. Below we will analyze /154
only the first two conditions (a) and (b) with the additional
limitations Amy = 0.

In the general case the excess lateral stability of an air-
craft myp(o,B) is a certain nonlinear function of o and B. Tor
simplification of computation the analysis will be carried out for
the case which is of the most practical interest, when the lateral
stability mg(a,B) depends on the angle of side slip B and the
product (a-B8).

Let us determine certain general properties of the function of
the value of the required moment from the ailerons Amy(wg) which,
by taking into account the discussions given above, we can write in
the form

— AT, = [ T (059 Bs s | (5 .12)

Let us introduce the function ka with the help of the following
relationship:

ag - a
ka: 0 S_S.

Bss (4.13)
Taking relationship (4.13) into account we find
My —a. = (BsS)y — — B2
= T“:mXX—]—nzio(_is)—l—coan;?-ka (J—S . (4.1Y4)
Dy Wx x

Introduction of the coupling coefficient between agg and Bgg permits
us to obtain the dependence of Am, on one parameter (Bgg/wgz).

The condition for the existence of a system of inertial ro-
tation of an aircraft is the presence of a zero in the function
Amyp/wy in the vicinity of the second critical rolling velocity. Let
us_look first at several specific cases of change in the function
(Amg/wp), which we shall denote by the letter Y:

Y=a,@P+aBta, (a,<0), (4.15)
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where
5. Bss
p:
x

= .
w

1. The case when a2z = O(m%B = 0). Two types of changes in
the function Y(B) are possible (Fig. 4.22,a). When a; < 0, which

corresponds to a negative value of mgo, the funtion Y(B8) has a

zeroc with a negatlve value of the quantity (Bss/w ). A system of
inertial rotation is possible during rolling maneuvers carried out
from conditions of flight with a negative G-force (ag < 0). This

case is similar to that studied in Section 17.

2. The case when a; = 0(mfy = 0,o0r in other definitions o¥*
= 0). The function Y(B) is symmetrlc relative to the axis 8 = 0

(see Fig. 4.22,b) and has two zeros in that case when as > 0. This /155
case is similar to that analyzed above in Section 19, where it was

shown that a system of inertial rotation is possible in the original
trim of the aircraft, if wg << wg. When ap < 0, there are no zeros

in the function and the system of inertial rotation is impossible.

3. The general case. Let us confine ourselves to an analysis
of the function Y(B) for a; < 0. From expression (4.15) it follows
that when ap > 0, the function Y(B) always has two roots (two zeros)
of different signs (see Fig. 4.22,c). In this condition a system
of inertial rotation 1s possible for any original longitudinal trim
of the aircraft.

When az < 0 the function Y(B) may in general not have real
roots, or may have two negative roots. The condition for the
existence of even omne real root of the function Y(B) is the require-
ment for a positive discriminant which is written in the form

Y a0 v
a2l - — l /al>0
—~" 3 — N —
2 - [ /f 3
- 2,0 [ 240 2y
- N
a) c) \
Y(ml a,=0
N 220 ,
a/ B
— T ’
-~ \450
b)Y/ N
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a: > 4aqa,. (1.16)

If we substitute into expression (4.16) the values of the aero-
dynamic characteristics of an aircraft, we find the necessary but
insufficient conditions for the existence of systems of inertial
rotation in the general case.

(mx0)

X

4mxm“9 ka. (4‘17)

When (mgB ka) > 0, inequality (4.17) is always satisfied. Let
us note that from the two zeros of the function Y(B) (see Fig.
4,22,c) one corresponds to the statically unstable solution. The
graph showing the changes in the function Amx(wx) is shown on Figure
4,23.

Let us look at the use of the necessary condition for the /156
existence of a system of inertial rotation in specific cases for
various relationships of the critical angular rolling velocities
Wg, wp on which depends the form of the function ka in the vicinity
of the second critical rolling velocity.

(1) 0, > .

Afizk ] ; unstable Let us determine the quantity kg
E motion when w, = wy:
T
l B -2
! 7.2 +(my F—Buwx) Ap;{_my” mzzb
- ‘| '*'*-l (—L‘JI ka:_‘“ - — - —— L. R (4'18)
| |\'s]+\b1 Ry R T Y I B
! ! mo?ior? by T2 T ou Tepy
|
| ]
Fig. 4.23 Taking into account that w, > wy and

the approximate relationships are
satisfied for the critical rolling velocities

52:__m;b .—?:._mg (%.19)
: Ae > Bu
we find
“:J —
[B“('?—Ea - mzb"]
= A
_ c =
wE(B—;——rE‘;") (4.20)
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From expression (4.20) it is obvious that the function k5 is always
negative and consequently when m%s < 0 the system of inertial ro-
tation is always possible and there are two values of B corresponding

to this system. When wy > wg, expression (4.20) can be simplified.
- \2
h—— B [1 (2] ]
-5 e (4.21)/157
(B 2 ——my” —_—

In the case when m%s > 0, the system of inertial rotation is
possible in satisfying conditions (4.17) which may be rewritten in
the form

—al (B c—z’—-fl—la;y)'./l
m o D) () -
(%Y~ a\1] - (4.22)
Amet [1_(3:) ]m‘bB

An example of the boundary of the region of the parameters E%B
and mgo, for which a system of inertial rotation is possible, is

shown on Figure 4.24.

(2) $a<<—(-’;@'

mek
— I o From Formula (4.18) it follows
_*p % ] *% that with such a relationship of the
L TTT1.0 i - critical rolling velocities the value
N gl LT T { of the coefficient k, is quite sensi-

tive to selection of the value wy,. We
can show that in the range of angular

velocities greater than the second

s L] T critical, the quantity k, is contained
07 0 01 L34 in certain limits.

Fig. .24, kamax>ka>kumlny (”’-23)

l\l N W+ o1
_Sygtem of inertidl
| | rotation impossible

where Kgpmax > 0 but Kapip < 0. Returning to Formula (4.17) we find

that for m$B < 0 the system of inertial rotation is possible, but /158
as a function of the quantity ky its probability is different. We

can assume that the closer the angular rolling velocity is to the
critical, the more probable will be the development of a system of

inertial rotation.

Let us determine the expression kyupsyx- The angular rolling
velocity for which k, = kgpax is determined from the condition
Ao(wx) = 0, whence follows
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—a X Ca - ca. —4: —- —
[»_ mz'b—_——1|<—A—z-—r;:z)<.—yB—my)+mymb
may + Apey 2 2 s P

(u.2ym)
ka =--- - - a
max _ = i .
may m!‘y + prxB—?

Using condition (4.17) and expression (4.24) we can plot the
regions of the parameters (mxs, mgo) with a different degree of
probability of the system of inertial rotation analogous to that /158
shown on Figure 4.24, The results obtained are given in Table 6.

TABLE 6

Wgy,

m%B < 0

A system of inertial
rotation is possible when

ap > 0 and ag < 0

> wg (Characteristic for M » 1)

m&f > o

A system of inertial rotation
is possible if the following
inequality is satisfied

¢ =
s(gly _=o
mxo) (B 2 myy) A

m™? < B
- w

9 xm’ (1— = )B
a

(for ag < 0)

wyg <<wpg (Characteristic for M < 1)

m2‘:8<0

A system of inertial
rotation is possible when the
following inequality is satis-
fied

(mm) > 4&‘“&1;”1” k,

mgB>O

A system of inertial rotation
is possible when ag > 0 and
ag < O.
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21. Approximate Analytical Evaluations of the Maximal Angle of
Side S1ip During Maneuvers Accompanied by Strong Rolling.

In piloting an aircraft, maneuvers accompanied by rolling are /159
basic. 1In connection with this it is quite important that we look
at the problem of determining G-forces which act on the aircraft
in carrying out such maneuvers. The flying tests and computations
show that G-forces which occur during flying maneuvers, both normal
and lateral, may reach significant values. In particular, according
to the published data, it is known that during rolling maneuvers of
the American experimental aircraft X-2 there were catastrophes
associated with breakdown in the vertical tail group under the in-
fluence of large lateral G-forces [371, [38], [51], [59].

In this section we have summarized several results obtained
in studying the dynamics of an aircraft and the analysis of the
G-forces acting on it, with the simultaneous control of ailerons
and elevators. With respect to the large number of parameters
which influence the dynamics of controlled motion of an aircraft
the results given below are not sufficiently complete. The in-
vestigations which encompass all questions of the dynamics of con-
trolled flight of an aircraft with analysis of the maximal G-forces
apparently can be carried out only for a specific aircraft design.

We will look only at the qualitative characteristics of the
transient conditions of an aircraft during rolling maneuvers,
since to obtain quantitative results we must carry out a more pre-
cise analysis of the dynamics taking into account the nonlinearity
of the dynamic characteristics of the aircraft, for example, such as

mb (a), mz(a), mﬁa(a) ete.

Let us introduce approximate formulas for the characteristics
of the transilient conditions based on the basic parameters of motion
of an aircraft during rolling maneuvers carried out with the help
of the ailerons from conditions of flight with a positive normal
G-force n,p. Since the solutions to the equations of motion for an
arbitrary law of deflection of ailerons in time cannot be obtained
in analytical form, to find the approximate qualitative results we
must narrow the class of controlled processes to be studied taking

as a basis certain rather simple model cases. As such a rolling
maneuver let us look at the motion of an aircraft after deflection
of the ailerons. Such a maneuver may be valid in carrying out

advanced flying patterns called "roll", and also corresponds in the
general case to the beginning of a rolling maneuver of an aircraft.

We shall assume that the initial conditions are the conditions of
flight with a constant positive G-force nyg (i.e., ag > 0) (in the
specific case of horizontal flight). Let us look at the case when

the critical angular rolling velocity corresponding_to a_yawing

motion is smaller than the critical velocity i.e., wR <€ Wq, which /160
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is characteristic of supersonic flying speeds. With such relation-
ships of the critical rolling velocities the greatest interest is
that of analyzing the change in the lateral G-force or the angle of
side slip of the aircraft as a function of time. As was found in
analyzing the curves of the static solutions and as a result of the
numerical computations of the transient conditions, the gradual
deflection of the ailerons leads to motion of the aircraft with an
angular rolling velocity accompanied by Iintense development of

side slip. Change in the angle of side slip has an oscillational
character, sometimes with large overshoot, which may be dangerous
from the point of view of stability of the aircraft and the effect
of lateral G-forces on the pilot.

Let us find approximate analytical evaluations for solutions
to the system of equations of motion by looking at the quantities
wpe and ap as known functions of time determined by the deflection
of the ailerons and elevator, respectively. We can determine them
by using the value of the maximal angle of side slip Bpax during
the rolling maneuver. The simplified assumption concerning the
fact that wyp is a known function of time will 1imit application of
the results obtained for aircraft with a small wvalue of lateral
stability (mg ~ 0).

The course of further discussions includes the following. The
equations of longitudinal motion of an aircraft are simplified in
such a way that the order of the system of equations of motion of
an aircraft is reduced to the second. The equations obtained with
variable coefficients are approximately integrated and the formula

for Bpagx is derived.

Let us look at the equations of longitudinal motion of an air-
craft during a rolling maneuver (1.33):

da cy -

d—r ~2—a——p.u)z:-—-p.ﬂo)x;

- o (4.25)
Wz —m® o, —m* a—=—Avo w

dt zh z zh CExTY

With the help of simple computations we can transform these equa-
tions to the form

2 = = —_ C“E@
ii+(~ L3, 6—2”—)@—4—9(—%5— ‘ zb—)a:

a2 dt 2u

=Apo my~95x£+7n_ff)9.3@—93 (f: ; (4.28)
d2wz+(— Oz ﬁL) doz 4w (—m“ _ m;z )o_f =
dv? o) ar b % z

T B — Ao, et Ape, S A Yy o
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We try to find extremely simple final formulas and make a /161

series of assumptions relative to the properties of the solutions

of the system of Equations (4.26). We assume that the natural
frequencies of the aircraft oscillation in angle of attack o and

angular pitching velocity are considerably greater than the fre-
quencies of change of the variables in the right hand sides of

these equations determined by the values B(t1), wy (1), wxplt) and the
degree of damping of the processes for a and wy; are also rather

high._This assumption is valid in those cases when the inequality
Wy > wg 1s satisfied. With such assumptions the approximate soclu-
tion for a and w, can be assumed as quasistatic and written in the
form
1 -— —_ — - —
Qg dt lb dt - (4‘27)
- 1 - do - de @
W, o~ 2 B F_ x C, - —
2 ao[ pimz, o, — Apo, p= Apoy, = —Ap._élmxw”]’
where
— ¢ my%
ag=| —mi - .2!‘ b |, (u.28)

Simplified assumptions have permitted lowering the order of
the system of equations of motion of the aircraft from fourth to
second. If we substltute expressions (4.27) and (4.28) into the
equation for B’ and w, and make the necessary transformations we
find the approximate equation of second order for determining
size of the angle of side slip R(t) in the form

P L g @)=, "“"-L%(w;)w (4.29)

where the functions p(uwg), g(wg), bl(w ) bo(w,) are found according
to approximate formulas (1n the expre331ons for P, q» b1, bg certain

terms of the type ia Z?j (:?) , etc., have been omitted where their

influence is not substantial):

Cg c* cg -
ag —?-—m ” + ABu? 12 ?y_—2)+p-» (—m | J— b)

p(0)= -
: ~y A8 _, +
ag+ w2 (1 + AB) 4+ o pioy
J
AB ., (c; ) (4.30)
—pto} | = —Am 2 =h
a
+ ;

AB
ay+ w_‘,pi’(] + AB)-- a—o-pﬂmx
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~ - 1
Q(mx‘:AO(“)x) - AB H /162
g+ W2 p2(1+ AB) + ;wm:

by(v)= Fo% : (4.32)
AB —,
ao+ oy p2 (1 + AB) + T “wtol
- c“ _ .
_ ao(—aoﬁzﬂ_;_ AB -21&‘2.;2)4-0),03(‘:0_,4“2:,3)
by (w,) = : :
0( x) 2 AB o .
ook wep2 {1+ AB) 5 ety (4.33)

Let us note that all the functions (4.30)-(4.33) are even functions
of the angular rolling velocity wg,. The graphic character of their
change is shown on Figures 4.25 and 4.26.

bovbl r’ I
n=2
>\ﬁ»+A s
ﬁ - R S
J 11 NCTT
I [ - a,15 + —-—_—————.\_
| N
- N
apz z 71 T BN
[ Voo [ |41 e
A EANE
o141 N 1 I
T 0,05F t—1 - +1—
i 4_]—_ TTT T Iz
1T 1T :
4 05 1 7rrr
0 0.5 7
b
Fig. 4.25 Fig. 4.26

After all the simplifications made for finding the rules of
time change in the angle of side slip B(1) we find the linear non-
uniform differential equation_of second order with variable coef-
ficients (since the quantity wge is a known function of time). Let
us find an approximate solution to the equation for the gradual
deflection of the ailerons with zero initial conditions for all
parameters of motion. We shall look at the equation for the angular
rolling velocity of an aircraft w, in the most simple form by as-
suming that the aircraft possesses a negligible small lateral

stability.

/163
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-
Z:* —miFe,=m B (4.34)

The solution for E&(T) for a gradual deflection of ailerons
and zero initial conditions is determined from the formula

0, =2(1—e™),

where s (4.35)
,;;x }

= — T - l (4.36)

x

Let us seek the solution for the angle of side slip in the form
B@)=bun(®+tsp () (4.37)

where B, is the approximate general solution for the uniform
equation; and Bg, is the approximate specific solution for the non-

uniform Equation (4.29).

To find Byp and Bgp We use known approximate asymptotic
relationships [7], [61], which permit finding the solution to the
linear equation with variable coefficients and in first approxi-
mation we find

T
- %—5‘ p (v)d=

~_Bo , 0 ,Sm(XVq—(T)der%); (4.38)
0

do, _
by —— + bowx (7)

(4.39)

The arbitrary constants Bg and ¢p can be determined by taking
the initial conditions into account

dB
B(O)-_:;(O)zo. (4.40)
We find 802_4 B ()
Vg @OFsing (4.41)
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(4.42)

%=mmta% V400

b0(0) | [200) o (), 5 (O]
o 73 e (12 50)

Numerical calculations show that the value of ¢¢ is near -w/2, but /164
sin ¢g = -1 (Fig. 4.27). Hence if we assume that the equation ¢y
= -7/2 is satisfied, we can reduce the solution for B(T) to the

form
8 7) =210 Doe ™+ by (1) (1 — e~ o)
g(v) -
lt -
R RAGEE
SO | cos( (V7
Ve vim JVa@az). (4.43)
ml =90
por 7 T T sing '—*—1~ T
o] H1 ot N
IR | -40 s -
S = — L
o [ s la 2] n=s
S SIS, i ST RN S -
] _4 J |2 |n=/
TL ) “J’ T
L -0,5
0,5 wg 0 0,3 w
(&) (&)
Fig. 4.27

Figure 4.28 shows the results of comparing the solution of
Equation (4.43) with the precise one obtained by modeling the equa-
tions of motion (1.28)(the approximate solution 1is given by the
dotted line). As is obvious from these figures the agreement of
the solutions is totally satisfactory.

Of basic interest is Formula (4.43) for finding the values of
the maximal angle of side slip during a rolling maneuver (B iy )-
We may approximately assume that the angle of side slip takes its
own maximal value at the moment of time when

;]/q@)dtzﬂn (4.u14)
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Relationship (4.44) is obtained from the condition of equating
cos Jlfqh)dﬁ) to unity with a minus sign which, in the case of a

6
small damping of motion of an aircraft in pitching and yawing, ap-
proximately corresponds to the moment of time that the maximum is
obtained for the angle of_side slip. We shall also assume that the
angular rolling velocity wg(t) practically reaches its own steady

value wp(® ) = 2 much earlier than condition (4.44), i.e., before
B reaches its own maximal value. /165
3
>,
1>10
(u.u5)

m2=0 ﬂyg=z

[ 1orad7ee

45 rad/sec 0rad/sec

wr . w‘t .M.___.
Q Jf—“fj /’_h\\si g05rad s T ¢

« 021"5 - o

T 5 T T ¢ ;‘J}/“*J' R t

I = -era3//—_-—*‘§::?-—-_f=—4=:=
405pad — —

B +——t — p —t—

-7 W tsec 5 0 tsec

Under such assumptions, Equation (4.44) may be approximately
written in the form

11
TV (4.46)

Taking relationships (4.45) and (4.46) into account, from solution
(4.43) we find the approximate expression for the quantity Bpgy:

4 _17(9) L
~4 (O g(Q) 3 b () 2 Vi@
pmax kSS‘ )[l/(Q(O)) (‘._O(Q) (4 —f—l]. (u.47)

The function by depends very little on the quantity 9 (see Fig.

4,27), therefore if we substitute bg(R) for bg(0) and express the

values of all the variables through the aerodynamic and inertial
characteristics of the aircraft, we obtain the final approximate /166

formula for finding the ratio (Bpax/Bgg):
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Smaw\,\,. ! ’ ’;:x - 2
(B_J_}/(‘HQ))‘. N e V91, (4.48)
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Fig. 4.30

As an example, on Figures 4.29 and 4.30, we have plotted
graphs of the dependences (Bmax/BSS) and Bpayx on ©, computed using
Formula (4.u48); using the same points we have plotted the solutions
obtained during the modeling. From these figures it follows in
particular that the ratio of B, 4 to Bgg is decreased with an in-
crease in the size of ©. This i1s due in first order to the decrease
in the frequency of oscillations and consequently to the increase
in the time 1t takes to reach the maximum for the angle of side slip
B. With an increase in the time of the transient condition, the
greater part of the energy is dissipated and the amplitude for the
angle of side slip B is respectively decreased. Increase in the
initial normal G-force nu during the rolling maneuver also leads
to a decrease in the overshoot for the angle of side slip R. How-
ever it follows to note that, regardless of the decrease in the /167
relative quantity (B,,4/Bss), the value B,y itself [with increase
in the size of the angular rolling velocity with which the maneuver
() is carried out and in the G-force (n,_ )] is increased since
Bsg changes more strongly than does the ratio Bpax/Bgs (see Fig.

4.30).
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Deriving ag roximate Formula (4.48) was based on the assumption
that |mzb| > lm T The graph of the results of proving the effect
of this assumption on the results
of computation is shown in Figure
4.31 (on the figure we note the

B_p.
Brax Mz=0iny=2 Modeling» solutions obtained during model-
i , ‘ oMz _jz, ing). From Figure 4.31 it fol-
ss : S RV lows that the satisfactory agree-
. B I S N éb ment of the approximate compu-
4 . ~Computation ] tations with modeling is valid
[ I IR for the relatlonshlp mzb/mB >
o \f\ — ° L0 2.0 (4 2 B).
J —3t 4 S X 0,57 ’
o AEEE : The results obtained above
2 U P }i ’ , belong to the case when the air-
[- ’ 8’ { \k ,‘7 craft does ngt possess lateral
‘I - i stability (mgz = 0). As the
7 : l computations and modeling show,
,~4 l the presence of lateral stability
Lﬁ l somewhat lowers the size of the
0 95 10 (o overshoot for the angle of side
“%) slip of an aircraft during
rolling maneuvers. With over-
Fig. 4.31 shoot for B the size of damping
of the aircraft for yawing mWY
also has an effect. For illustration of the qualitative picture

of the influence of these¢ parameters, on Figures 4,32 and 4.33
graphs are plotted for the dependences of Bpgx/Bgg @s a function

of Q.
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For the original values of the parameter my¥ and mgo we have taken /169
several mean values which are characteristic of maneuvering aircraft
with swept wings (with an angle of sweep ¥ = 459),

Dynamics of an Aircraft in Carrying Out a Turn at a Given
Angle of Bank.

Pinsker [50] has analyzed this specific but rather widespread
turning maneuver at a given angle of bank in considerable detail
and systematically.

In this paper, using the systematized modeling, the transient
conditions of an aircraft are studied for the angles of attack and
side slip with the rolling maneuver indicated above, and functions
are plotted for the maximal overshoot for these variables on
several basic parameters which determine the dynamics of the air-
craft.

In this paper are studied the
turning maneuver of an aircraft
at a given angle of bank vy, which
is accomplished from the conditions
of horizontal flight with an angle
of attack agp. In this case it is
assumed that the change in the
angle of rolling velocity is a
known function of time, a typical
graph of which is shown on Figure
4.34., It is assumed that the
angular rolling velocity changes exponentially and in such case the
signs of the exponents for increase and decrease in the angular
velocity are identical. The basic parameters which determine the
motion of the aircraft during rolling maneuvers are the excess
longitudinal and directional stability, with respect to which all
dependences of the size of overshoot for the angles of attack and
side slip are plotted in this paper as functions of these two
parameters. We also study the effect of damping and the ratio of
inertial moments Jy/Jz for the value of the dynamic scattering. In
the paper are contained detailed graphs which permit approximately
determining from the known parameters of the aircraft the maximal
values of the angles of attack and side slip of the aircraft for
such rolling maneuvers.

The basic assumption which limits the range of the problems,
for solution of which the results obtained in [50] are used, is
the form of the transient condition for the angular rolling veloc-
ity (see Fig. 4.34). 1In the paper it is noted that such a charac- /170
ter of the transient condition for w, may be guaranteed by the pi-
lot using the manual control. Such a conclusion is correct in the
entire range of angular rolling velocities for aircraft in which
the value of the lateral stability mg is negligibly small.
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For aircraft possessing a rather large degree of lateral
stability, the results obtained in [50] are applicable only in
the ranges of stable motion with angular rolling velocity w, less
than the first critical. 1In fact, as was shown above, the seeming
effectiveness of the ailerons in carrying out maneuvers from con-
ditions of flight with a positive angle of attack is limited, thus
leading in several instances to the impossibility of obtaining
steady angular rolling velocities exceeding the first critical.
Analogously, for maneuvers with original negative angles of attack,
the motion of the aircraft is unstable in the range between the
first and second critical angular rolling velocities and apparently
it is impossible to guarantee transient conditions of the type
shown in Figure 4.34 in this range.

In summing up it should be noted that we can look at a large
number of rolling maneuvers for different rules of deflection in
time of the elevator and the ailerons. However such investigations
possess the disadvantage that in them the reaction of the pilot to
the motion of the aircraft is not taken into account, which "while
interfering" in the control may both improve the characteristics
of the transient conditions and thus lower the load acting on the
aircraft or make the transient condition worse. Analysis of the
dynamics of an aircraft during rolling maneuvers, taking into ac-
count the actions of the pilot, may be carried out by investigations
in flight or approximately by modeling flight in a trainer. Of
certain interest are the investigations of the motions of an air-
craft using the mathematical model of a piloet. Only in carrying
out such complex investigations is it possible to sufficiently
define the most dangerous systems of control of an aircraft and the

G-forces acting on them.
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CHAPTER V

DYNAMIC CHARACTERISTICS OF AN AIRCRAFT WITH SIMULTANEOUS
CONTROL BY AILERONS AND RUDDER

Previously in all sections of this paper we have studied the
motions of an aircraft during rolling maneuvers when the aircraft
is simultaneously controlled by ailerons and elevator. However,
in carrying out certain rolling maneuvers the pilot must deflect
the rudder while piloting. Such a deflection of the rudder may be
both the result of deliberate action by the pilot causing the
maneuver to be carried out or as the result of pilot error. In the
Present chapter we look at the characteristics of spatial motion of
an aircraft with the simultaneous control by ailerons and rudder.
We analyze the physical picture of motion and derive the conditions
of stability of the controlled motion of an aircraft during a
rolling maneuver with deflection of the rudder.

22. Basic Properties of Motion and Stability of an Aircraft
with the Simultaneous Control by Ailerons and Rudder.

The motioun of an aircraft with simultaneous control by ailerons
and rudder possesses the following two characteristics which we
shall look at briefly. The first characteristic of spatial motion
of an aircraft moving at an angular rolling velocity and with a
deflected rudder is that simultaneously with development of the
angle of side slip in the aircraft the angle of attack also changes.
This phenomenon is similar to that of side slip during rolling of
an aircraft flying at a non-zero angle of attack ap # 0 (or &g #
0), and has the same causes. The physical causes for change in the
angle of attack with deflection of the rudder may be simply ex-
plained in the following manner. Let us loock at the motion of an
aircraft rotating relative to the longitudinal axis (0X;) on which
the disturbing moment Am, = mSr. *8y from the deflected elevator
(Fig. 5.1). The action of thé controlling moment Am, on the _air-
craft leads to the appearance of an angular yawing velocity wy and
consequently to a deviation of the vector of the total angular
velocity @ from the direction of the major inertial axis of the
aircraft 0X;. Because of the nonagreement of the vector of angular
velocity with the major inertial axis, centrifugal forces begin to
act on the aircraft, which on Figure 5.1 are conditionally shown
as being applied to two loads, equivalent to the mass of the
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aircraft distributed in the fuselage. It is easy to approximately
compute the moment from these forces; it will be equal to

An
Mz Q'—(J.l!__"I,\‘)w!/w,\“ (5.1)

This inertial moment is compensated
by the aerodynamic moment of stability
AN\ E- MGAa. From the condition of the
D) @z%“« equality of the aerodynamic and in-

. S ertial moment we find an expression

for increasing the angle of attack Aa,
i ~ which is valid for small angles of the
angular rolling veloclty wg:

[}
O kL et md
- m-b v 2 g (5.2)
A mz'my

The dependence of the steady value in the increase of the angle
of attack on the value of the yawing moment Am, is determined by the
coefficient A%Sr, the formula for which is shown on Table 2. Using
Table 2 we can write an expression for A%Sr and determine several
properties of this function:

20 — p
A — By (awz A 0_2
e 4 ap T 2/ (5.3)

From analysis of relationship (5.3) we can make the following
conclusions. First, the dependence A%ér(gx) is an antisymmetric
function of the angular rolling velocity wg. Secondly, since there
are no values in the numerator of Expression (5.3) which are pro-
portional to the critical rolling velocities the form of the func-
tion A%ér is independent of their relationship, analogous to the
manner in which the form of the function A%ér_is independent of the
relationship between the critical velocities w, and wg (see Section

18).
a

From analysis of the coefficient AMGT (5.3) it also feollows
that deflection of the rudder "counter to the rotation", at angular /173
rolling velocities less than the first critical when an angle of
side slip is created which inhibits development of the angular
rolling velocity, i.e., the following equation is satisfied:

sign %: _..Sign U—)n (5.4)

always leads to a negative increase in the angle of attack (Ao < 0).
Deflection of the rudder "in the direction of the rotation', when
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the side slip facilitates roll, i.e., the following relationship is
valid:

signd,. = —signax, (5.5)

always leads to a positive increase in the angle of attack Ao,
regardless of the_direction of the roll (the sign of the angular
rolling velocity w,). In fact, satisfaction of condition (5.4)
means that
signw, —sien ®
g ¥ gwxv (5.6)

whence it follows that for all values of the rolling velocity

wxMén < 0 and consequently leads to negative increases in the angle
of attack Aa < 0 (see Fig. 5.1). Analogously we analyze the rolling
motion of an aircraft with deflection of the rudder "in the direc-
tion of the rotation".

The second characteristic of motion of an aircraft with simul-
taneous control by ailerons and rudder is the yawing reaction of
the aircraft which is opposite in sign to deflection of the rudder
8§, at angular rolling velocities greater than the critical rolling

velocities corresponding to the yawing motion. Let us look at this
case. From Table 2 we can write the expression for A 8n:
r « —a
< 2 — ¢ m,? -
A —(Psf | _ | v "2y Apge (5.7)
m6b (AIHy) 0 z, b+ 2!-‘- AP«nx

In the expression for Ay, if we ignore the terms of damping
and cancel, we find an approximate expression for the function (BSS/
Amy) in the form

—_——

s~ 1 1

From Expression (5.8) it follows that at angular rolling veloc-
ities which satisfy the inequality wa| > |w8|, the function (Bgg/
Amy) changes sign. Let us recall that the condition

[o,] < Jwgl (5.9)

is an approximate condition of the aperiodic stability of the yawing
motion of an aircraft during a rolling maneuver.

The physical meaning of the change in the relationship between /17U

Bgsg and Am, may be qualitatively explained by the fact that, at
angular ro%ling velocities greater than the critical, the static
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stabllity of yawing motion of the aircraft is disturbed, however
the dynamic stability of the total motion is retained. In this
case there is a certain analogy with the longitudinal trim of an
aircraft when for trim of the stable aircraft we required , >0,
rather than the unstable§ , > 0.

To explain the results obtained we may approach from another
position. The effect on the aircraft of the moment Am, during a
rolling maneuver may be studied as a periodic disturbance with a
circular frequency wyg (see Section 18). In this case the increase
in w, up to values which exceed the critical value wg represents
passage through resonance and leads to a change by 180° in the re-
action phase of the aircraft for B for such a periodic disturbance.

Turning to the precise expression for (BSS/AEQ), we find that
due to the presence of the supplementary terms which depend on
damping, in the expression for 4y when wy > wg, the numerator of
Expression (5.7) vanishes at values of the angular rolling velocity
w, smaller than 4g, but when wg < wg, this happens at values of wy
greater than Ap. This leads to a change in the type of the de-
pendence of AESP for the different combinations of wg and wg and
causes the respective changes in the dynamics of the aircraft which
will be studied below in greater detail. For illustration of these
facts on Figure 5.2 we have plotted graphs of the functions A%@r
for different relationships between the critical rolling velocities
» and w, . The dotted lines indicate the curves which correspond
to the dynamics of the alircraft not caused by aerodynamic damping.

One of the basic questions in the dynamics of an aircraft in
carrying out spatial maneuvers is the question as to maintaining
controllability of the aircraft by the ailerons at an angular
rolling velocity exceeding the second critical. Losses in control-
lability of the aircraft are possible in those cases when a stable
static solution (singular point) exists which is nonzero when Am, =
0, i.e., with undeflected ailerons. Maneuvers for which the air-
craft may enter into the condition of motion with angular rolling
velocities exceeding the second critical are studied in greater de-
tail in Section 23. 1In this section we determine the conditions
of existence of the solution wg > w2epit when Amy, = 0 in the general
case of carrying out a spatial maneuver by deflection of the ailer-
ons and the rudder at various initial longitudinal trims of the
aircraft (ag, Aag). We conduct the investigation for nonlinear
dependence of the lateral moment on the angles of attack and side
slip mx(B, o) which can be written in the form

m,==mf (a—a*)3,

i.e., the lateral moment may be written in the form of a derivative /175

mg which depends on the angle of attack.

Let us look at different extreme variations, when:
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In this case let us not lcok at the general case when a® and
mgs are found in an arbitrary relationship. Investigation of this
case may be carried out by using the same method which is proposed
below but will lead to considerably more awkward computations.

The condition for the existence of_a singular point of the
equation of motign of an aircraft when w, > w2.p3t and Amy, = 0 in
the case when mg < 0, consists of satisfying in the vicinity of
this point an inequality, which appears as the condition that the
lateral stability of an aircraft must facilitate development of /176

rolling.

(25 st —a*) B, 0. (5.10)

The inequality must be satisfied for angular rolling velocities
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;*"9;201‘1“:(0)*'}&20:['3'_% (5.11)

In the region of angular rolling velocities which satisfy in-
equality (5.11), assuming that a® is not too high in Expression
(5.10), we can drop the term (op - a®), which is usually small in
comparison to agg and find condition (5.10) in an approximate form:

s gfis < 0. (5.12)

Inequality (5.12) is satisfied when a g and Bgy have different
signs. Using Table 2 let us write expressions for agg and Bgg for
a rolling maneuver of an aircraft trimmed at an angle of attack oy
with deflection of the rudder.

1%, Y . mmta
ass?:—‘{—qux(mgT'Bpwﬁ#b)aﬁ
0 Ap
(—; p 05) —
Z . .
-4 m2b+ 5 ) Ay ; (5.13)
— 2 (e ®y 1 c;;nf% ABuo? :/
Jig S_Ao ¢ my mz‘b—!— " - + me? Qy —
-_ > My .
abt o Mk [ BT (5.14)

Relationships (5.13) and (5.14%) must be studied with angular
rolling velocities w, that satisfy Condition (5.11) when 43 > 0.
It is easy to see that the boundaries of the region which differ

in the sign of inequality (5.12) in the coordinates oayg, Amy are
straight lines.

'S
S

a9

o )
0. (5.15)

T R

The type of the regions (plotted in the coordinates of the
parameters of control in the longitudinal and lateral motions (ag,
Am, ) which possess the property that stable singular points exist
in”them corresponding to the rolling motion of an aircraft when the
ailerons are placed into the neutral position) depends on the re-
lationship between the values_of the critical angular rolling veloc-
ities of the aircraft wy, and wg.
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Let us look at the case which is characteristic of flight at
subsonic speeds, when wg <« wg. For determinancy let us assume that
we > 0. Then from Expressions (5.13) and (5.14) it follows that
the coefficients for ap in both expressions are positive and for
Amy they are negative.

Consequently both boundary lines pass through I and II of the
gquadrant. An example of such regions is given on Figure 5.3. The

region of parameters, for which agg
D<@y ; mgPed and Bgg have different signs and in
o, T connection with which loss in control-
"";i' 1 lability of the aircraft by the ailer-
\ . ons is possible, is shown on Figure
dz 5.3 by the shaded areas. From Figure
1 : 5.83. it is clear that this region_does
oA not encompass the straight line Amy = 0
. | which corresponds to motion of an air-
0,025 g 0025 || craft with the rudder in neutral posi-
s AT, Sign &y tion (see Section 19). The region it-
V4 = self in which loss of controllability
7 ] of the aircraft by the ailerons is
A Inertiﬁljigfiifge possible is quite narrow and a rather
rotation Tmpossible precise agreement is necessary between

ag and Am, in order that when the
ailerons are placed in the neutral
Fig. 5.3 position the aircraft does not cease

rotation. Hence in particular we can
make the rather important conclusion that when wg « wy the aircraft
practically always retains controllability of the ailerons even in
that case when the rudder during the entire time of the maneuver is
deflected and at the end of the maneuver 1s not placed into the
neutral position.

Let us proceed to an analysis of the stability of motion of an
aircraft in the vicinity of the second critical rolling velocity
with a relationship of the critical vekocities w, > wg, character-

o
istic for flight at supersonic speeds. In this case the straight
lines agg = 0 and Bgg = 0 are arranged in the IT and IV quadrants
(Fig. 5.4). From Figure 5.4 it is obvious that for the relation-

ship of the critical rolling velocities when wy > wg, the picture

is substantially different than with the reverse sign of the in-
equality. The region in which losses are possible in the control-
lability of the aircraft now is encompassed completely in quadrants
I and III and the greater part of quadrants IT and IV, including

the line Am, = 0.  Hence it follows that practically in all combina-
tions of ap”and Am,, during rolling maneuvers accompanied by the
development of angular rolling velocities exceeding in value the
second critical, the aircraft may lose controllability by the ailer-

ons (with values of ag and Amy from the shaded region on Fig. 5.4).

For a more complete representation let us look briefly at the
cases when the lateral stability of an aircraft is independent of
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the angle of attack, i.e., m%B = O(mg0 < 0). The condition of /178

loss of stability, just as before, is such an influence of the
lateral stability on the motion of the aircraft which facilitates
development of angular rolling velocity of the aircraft. When

> 0, for this the following inequality is satisfied:

W
s <0 (5.16)
Do > @y, mEP O
. (Za - PO
24929] Loy : [ ] Using Relationship (5.14)
\'Q'Q/ /! ’ : l ] ) s
S S ST i it is easy to construct the
Dz ar) et e egd A, i . l I . . .
0ods L1 0] N 0025 A 0,05 boundaries of_the regions both
I T _ﬁ,'lﬁM] v piysign@y  for the case wg << wy and for
' ' c T !_LLXT%ﬁﬂiI] wg > wy, which defines the values
of the_parameters of control
Fig. 5.4 (ag, Am, ) for which realization
of systems of inertial rotation
of an aircraft is possible. Examples of the regions are graphically
shown on Figures 5.5 and 5.6. The characteristic singularities of
the motion of an aircraft caused by lateral stability which is
independent of the angle of attack is that, when Am, = 0, the entry

of the aircraft into a system of inertial rotation Yegardless of_
the relationship between the critical angular velocities wg and wg
is possible only during rolling maneuvers of the aircraft trimmed
at a negative angle of attack.

Finally if m%B > 0 and o* is not very high, the condition of
loss of controllability of the aircraft by the ailerons at high
rolling velocities can be written analogous to expression (5.12),
only the sign of the inequality must be changed to the positive

OLssBss>o (5.17)

It is obvious that in this case the boundaries of the regions
agree with those plotted on Figures 5.3 and 5.4, only now the
region is shaded where earlier it was not (Figs. 5.7 and 5.8).

From these figures it follows that in the case when m%B > 0 i.e.,
it has a sign which is opposite to the usual for subsonic flying
speeds, from the point of view of the controllability by the ailer-
ons at angular rolling velocities exceeding the value of the second
critical 5& > wpcrit, the relationship wg > w, is not favorable.

23. The Effect of Rudder Deflection on the Dynamics of an
Aircraft During Rolling Maneuvers

In this section we look briefly at the characteristics of the /180
transient conditions of an aircraft during rolling maneuvers carried
out with the simultaneous gradual deflections of ailerons and rud-
der for two basic original conditions of flight (horizontal flight
and flight with a negative G-force). Certain characteristics of
the motion of an aircraft with control by ailerons and rudder were
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studied in Section 22. In the present section the basic attention
is paid to an analysis of the possibility of the escape of an air-
craft into large angular rolling velocities, in particular into
angular velocities which exceed the second critical, and to an
investigation of the controllability of an aircraft by ailerons d
during rotation at such angular velocities. In the investigations
we will take into account the dependence of the derivatives of the
moment of lateral stability m, on the angle of attack, i.e., we
shall assume that the functlon m.(a) has a negative derlvatlve for
the angle of attack (Bm /3a < 0). Such a dependence of the lateral
stability on the angle of attack includes a number of character-
istics for the dynamics of the aircraft which were partially men-
tioned in Sections 19 and 22. The most substantial influence of the
dependence of the lateral stability on the angle of attack appears
in those cases when in the process of the rolling maneuver the

angles of attack of the aircraft become mnegative., In fact in this
case the sign of the derivative mg(a) changes and the influence of
the angle of side slip changes to the opposite. A characteristic

example of such a motion is the rolling maneuver of an aircraft
with simultaneous control by the rudder '"counter to the rotation"

.

i.e., when
sign 8, = -sign wg.

Deflection of the rudder &, during. a rolling maneuver counter
to the rotation leads to the development of an angle of side slip
of the aircraft, which prevents the rolling, and to a decrease 1n
the angle of attack and with a sufficiently large value of the rud-
der deflection to the escape of the ailrcraft in the process of the
rolling maneuver to negative angles of attack. With negative angles
of attack there occurs a change in the sign of the lateral stability
mg(a) (see Fig. 4.9) and if previously the side slip inhibited
development of rolling then the reverse phenomenon occurs now, i.e.,
the side slip of the aircraft begins to facilitate development of
roll. The aircraft seems to "catch-up" and the angle of rolling
velocity begins to grow until it no longer exceeds the value of the

second critical velocity.

This section consists of two basic sections in which we analyze
the effect of rudder deflection counter to the rotation and in the
direction of the rotation on the dynamics of the aircraft during /181
rolling maneuvers. In each section the investigation is carried
out both for the case when the smaller critical rclling velocity is
wa(wa «in) and for the case when the smaller is wB(w < ws)

1. Rolling Maneuvers of an Aircraft with Simultaneous Deflection _
of the Rudder Counter to the Direction of Rotation (sign &pr = -signu,)

(a) The case ;u <« EB (the relationship is characteristic for
M < 1 numbers). The character of the change in the derivatives of
the static solutions for the basic parameters of motion of the air-
craft in this case were studied in great detail above and is obvious
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from Figures 5.9 and 5.10, For a rolling maneuver carried out from
the conditions of horizontal flight, examples of the static solu-
tions for the basic parameters of motion are graphically shown on
Figures 5.11 ~ 5,13, and the transient conditions on Figure 5.1U4.
For these graphs we must make the following explanations. The
deflection 6, counter to the direc*tion of rotation when w, > 0 is
carried out to the negative_side (8§, < 0 on all the graphs for the
static solutions) and when w, < 0 to the positive direction (8, > 0
on all graphs with transient conditions). This agreement must be
taken into account in comparing the static solutions and the tran-
sient conditions.
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The characteristics of the rolling maneuvers, with the simul- /184

taneous deflection of the rudder counter to the direction of rota-
tion from the conditions of flight with a positive normal G-force,
are caused by the fact that the influence of the trim angle of at-
tack og and the moment from the rudder Am, leads to an increase in
the angle of attack o of different signs and the angle of side slip
B of identical signs. In this respect with the rolling maneuvers
with small aileron deflections due to the large lateral stability
of the aircraft mg(a) a basic effect 1is exerted on the motion of
the aircraft by the deflection of the rudder §,, which, as a result

§ =5° aa=othf'?5é=‘r° o
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Fig. 5.14

of the development of a large angle of side slip of the aircraft,
may even lead to a change in the direction of the roll. On the
other hand as noted above during rolling maneuvers with large de-
flections of the ailerons and rudder counter to the direction of
rotation it is possible for the aircraft to go into negative angles
of attack. With the motion of the aircraft with a negative angle
of attack there occurs a change in the sign of the lateral stability
mg(a) due to which the side slip that previously inhibited develop-
ment of an angular rolling velocity of the aircraft now begins to
facilitate its growth until w, no longer exceeds the value of the
second critical rolling velocity (Fig. 5.15). Maneuvers of this
type correspond to the escape of the aircraft into a system of in-
ertial rotation.

Graphs of the static solutions for the basic parameters of an
aircraft during a rolling maneuver with the simultaneocus deflection
of the rudder counter to the direction of rotation from the con-
ditions of flight with a negative G-force are shown on Figures 5.16-
5.18. For rolling maneuvers carried out under these conditions it
is characteristic that there be_the presence of stability of the
branch of the static solution Am,(wx) at an angular rolling velocity
less than the first critical veldcity which depends quite weakly on
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the values of the deflections of the ailerons and the rudder. In
connection with this the angular rolling velocity of the aircraft /186
with slow deflection of the ailerons and rudder practically is

[+ 4
N %f—7§f
HTEET I R
wi| “Ib“ i L} %8
L1 | IEY L
SRR EREEN: Ll T A , .
oL !_ B [ Yo “’ﬂll !4[ ‘,=-°‘Zh,f6,=6.a'-
:E%&o:/ o02) | || [o03 054 L ia0s| T §p=5°
I NKY, | 5,{ ol |l I )ﬁ wz
T T AR e 501 hal I I D o e
-q7 = “'}%B’\ -m"} It i+ ] -10 / S LSS
5 j-m ;— 4 / f 0
mE WL L C1) g
-0,200T] RO HEEH R |
o /—'/\\/ TN
Fig. 5.17 4 ™ -
o /
£ —orl 1L
0‘f—o_“zl 117
B T | - B 0 1 2 345 6 7 8 dtsec
gL IN T L l ] | Wz 8,10 wr[ | 8150
RN s
44 \BMT_ 4 HH
0 -5° 1%l [T @RI T B B
2,01 0,02 003 0,04 AR 1t L
'{_ i z G /r’" N \
y Il I o Ao
w f FZ -ort Tt ,
] Y ” | | 7 A% / / j
,4_4 } 1Y 5 7 1 2 3 tsecd 1 2 Jtsec
g2 1T AT
Fig. 5.18 Fig. 5.19

independent of the value of the deflections. Examples of the
transient conditions according to the basic parameters of motion
are shown on Figure 5.19. Let us note that with the approach of
the value of the angular rolling velocity to the value of the first
critical velocity, the angle of side slip of the aircraft changes
sign to the opposite (regardless of the fact that Am, sign w, < 0, /187
the angle of side slip B becomes positive) and begins to inhibit
the development of rolling. Because of this, at small elevations
of the ailerons, no angular rolling velocities greater than the
second critical are seen. With the motion of an aircraft at large
angular rolling velocities (wy > Wxp2cpit)s which is reached by
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large and sharp deflections of the ailerons, placing the ailerons
into the neutral position stops the rotation of the aircraft even
with the rudder kept in the deflected position.

(b) The case wqy »';B (the relationship is characteristic for
numbers M > 1). Examples of the change in the derivatives of the
static solutions for such relationships of the critical velocities
are shown on Figures 5.20 and 5.21. Examples of the static solutions
for the basic parameters of motion of an aircraft during rolling
maneuvers carried out from conditions of horizontal flight are
shown on Figures 5.22 - 5.24., Analysis of the transient conditions
of an aircraft and of the static solutions shows that with small
deflections of the ailerons the rolling motion of the aircraft is
determined by the value of the deflection of the rudder (Fig. 5.25).
The fact is characteristic that the beginning of the rolling
maneuver 1s accompanied by a strong change in the angle of side
slip so that in a number of cases in the analyzed examples the angle

of side slip B exceeds 30°. Such a change in the angle of side
slip is caused by the small degree of yawing stability of the air-
craft. With the escape of the aircraft into angular rolling veloc-

ities exceeding the value of the second critical velocity and the
ailerons placed into a neutral position, losses may occur in the
controllability of the aircraft by the ailerons which is expressed
in the retention of a practically constant value of the angular
rolling velocity regardless of the fact that the ailerons are lo-
cated in an undeflected position.

Rolling maneuvers with a negative initial normal G-force are
characterized by the relative ease of escape of the aircraft into
an angular rolling velocity exceeding the value of the second

critical. The static solutions and the transient conditions for /189
this case of the maneuvers are shown on Figures 5.26 - 5.28. Placing
the ailerons into a neutral position usually does not stop the

spinning rotation of the aircraft. Rotation of the aircraft is

stopped, and thanks to the influence of &6y, the direction of the
roll may even be changed, if at the moment that the ailerons are
placed into the neutral position the conditions (agg-Bgg > 0) are

satisfied.
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Rolling maneuvers when the ailerons are placed into the neutral
position are usually accompanied by a strong development of angles
of side slip B and attack a (see Fig. 5.28).

2. Aileron Control with Simultaneous Deflection of the Rudder
in the Direction of Rotation (sign &y = sign w,)

(a) The case w, <« wg (the relationship is characteristic for

numbers M < 1),

Examples of static solutions for the basic parameters of motion
of an aircraft during rolling maneuver with a simultaneous deflec-
tion of the rudder in the direction of rotation from conditions of
horizontal flight are shown on Figures 5.29 5.31. The character-
istic feature of the dependence of the size of the required moment

of the ailerons on Eé[Amx(a&)] is that
with small aileron deflections

to a very large degree 1is deter-

ap=0ty ¢ § =47 mined by the size of the rudder
we[@e [T T ] AT ] Qﬁ%&_ m—— deflection but, beginning from
ﬁﬁu:.,ér_é: 4 — .fﬁﬁo certain values of the deflection
wr 1 b I T i 1 v 1 §yp and the approach of the value
)4 | [/ of the angular rolling velocity
4 N to the value of the first criti-
A { cal velocity, generally ceases
- /‘/ NN to depend on the deflections
’a?“ \, '/ \/ b -0.05} \/ 6y and 85. Such a small de-
01?\&7‘?3 67"gt3ec B i\/ j_ pende?ce of the a?gular rolling
-q1 A \PF > 0 N7 7 b tsec velocity on the.81z? of the.
T lTiT T P&/} ’—QI \ + 'i control deflection 1is explained
' % v, - by the fact that with the ap-
§ =50 §g89° % proach of the rolling velocity
0z A r T §.=10° wg, to the critical value the
10 \ 0 wIKT—TDFT_“' angles of attack and side slip
| 1L0F e T B of the aircraft begin to grow
/ TT T T strongly and there is a rather
NN ] small change in the angular
~ -0,05 rolling velocity in order for
/N T AL the lateral moment [mg(u)-B]
—Q%' /s \‘f, mt, to compensate the changes in
-&e AR sisec, ST the values §, and 8.
o u 111 0 73 4;8e In the region of angular
-t c velocities of rotation of the
aircraft for rolling which ex-
Fig. 5.25 ceeds the value of the second

critical velocity (wx > wWx2erit)s
controllability of the aircraft by the ailerons 1s retained
practically in all combinations of deflections of the rudder and
conditions of longitudinal trim of the aircraft (ag) (see Section

22).
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Examples of the transient conditions for the basic parameters of
motion of an aircraft with gradual deflection on the controls are

shown on Figures 5.32 and on Figure 5.33 is shown the graph of change
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in parameters of motion of an aircraft with the ailerons placed in-
to the neutral position and the rudder kept in a constant pesition.
From Figure 5.33 it is clear that after placing the aileromns into
the neutral position, an angular rolling velocity is retained that
is determined by the value of the rudder deflection.

Examples of the static solution for the basic parameters of
motion of an aircraft during a rolling maneuver carried out from
conditions of flight with a negative normal G-force are shown on
Figure 5.34 and examples of the transient conditions on 5.35. The
characteristic feature of these rolling maneuvers is the relative
simplicity of escape of the aircraft into an angular rolling veloc-
ity exceeding the value of the second critical velocity. An Inter-

esting property of the rolling maneuver carried out at a longitudinal

trim of the aircraft with an angle of attack ap = chf/2, is that
when Amy, = 0 regardless of the deflection of the rudder in the
direction of rotation the motion of the aircraft occurs at a small
angular rolling velocity (see Fig. 5.3%). This fact is explained
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by the small value of the lateral stability of the aircraft mg(a)

in the examined example with a trim angle of attack ag = apf/2,

which makes the rudder practically ineffective in creating an angular
rolling velocity.
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Recordings of the transient conditions with the ailerons
placed into neutral position and retention of the rudder in a de-
flected position are shown on Figure 5.35.

(b) The case Ea >> EB (the relationship is characteristic for
numbers ¥ > 1). Examples of the static solutions for the basic
parameters of motion of an aircraft during a rolling maneuver with
the simultaneous deflection of the rudder from conditions of hori-
zontal flight and flight with a negative G-force are shown on Figure
5.36 and 5.37. The feature of the controlled motion of an aircraft
in these cases 1s the relative simplicity of the escape of the air-
craft into angular rolling velocities exceeding the second critical

velocity. Examples of the transient conditions for maneuvers
carried out from conditions of horizontal flight are shown on Figure
5.38. From the figure it is obvious that placing the ailerons into

a neutral position will not stop the rotation of the aircraft.
Examples of the transient conditions for the maneuvers carried out
from conditions of flight with a negative G-force are shown on
Figure 5.39, in particular, in placing the ailerons into a neutral
position. From Figures 5.38 and 5.39 it follows that placing the
ailerons into a neutral position in this case will not stop the
rolling turn of the aircraft, i.e., there is observed a motion which
is called the inertial rotation of the aircraft. It must be noted
that motion with the loss of stability usually exists in carrying
cut a large number of rolling turns of an aircraft. In carrying

out one turn such systems usually are unable to develop and the air-
craft retains controllability.

A1 I ITIT AT T UL smrs0 [10o] 52100
ol L e g AR
. : : |~ \ AN
|| T
o 117 U T ETTH
. i LETT TP LT
0 i | 174 VIL/ i _
. lq07 [4¢07) y 003[_Jg0+[J]] i1q0s5 0,06 007 | [ o,
-o0.1 S’-Ezﬂ. 4] ‘ - [1 \. 1
ML NIRRT ]
—gzlbd- NYHUA I | l |1
s L AR RRRI Y
~63 el L] L s
-0,¢ 1 \J,, 1 ! l ,Tﬁ
- \MT 1T L 1T LI -
id i |
Fig. 5.37

181




5=

g

N 1 T 7
-{Lol.:}J 1l ~10fw} wy || N
o NS L 1T s N L IANT
ogsf ] qost VI

0 —\_,\/\__,-JV—\/ \ N/ “Z

4 %-
0 ) Iy 77 % 5567
1L J 4 54577__6"ts“ec 2 3 tsec

af_ﬁz'h_f %6
8,=-5° §,=-10°
wr [ - ) W
-0 Iy; . L L4 "/'HEF —— “W_Ej
= A =1t e R T T
Al N BAVAVAAN ]
N L\
A"
0.05 P | N 4 o4 L
p [ 0
T2 %567 8tsec [V 23456 7 8tsec
"L 1N Il [ ] |
-02 SN Y
o ¥7J L1 J6 —so i
w_r w_r ]Y
: 1 &l
-1,0], V1 1,0}y L]
f 8 Y S
”%5_1\:_.\__ b’:_b——_ a% W Uzl -
2 N el aes] I N
J L]
o @ L]
OST 2 5 4 567 6tsec. Y123 4567 dtgec
-0 T Ry T
-0z e R
wNalNil TS |
182 [~ .




CHAPTER VI

THE EFFECT OF AUTOMATIC INSTRUMENTS ON THE DYNAMICS OF AN
AIRCRAFT DURING SPATIAL MANEUVERS

The characteristics of the spatial maneuvers, leading in cer- /200

tain instances to the development of motion of an aircraft accom-
panied by significant G-forces and angular velocities, causes us to
seek methods for improving the dynamic characteristics of modern
aircraft. A solution to this problem is possible in three basic
directions:

1. Guaranteeing the proper inertial and aerodynamic character-
istics of the aircraft in the design.

2. Introducing limitations to the piloting of the aircraft.
3. Using automatic equipment.
Each of these directions has positive and negative sides. It

is obvious that we are far from being able to guarantee the required
(from the point of view of spatial motion) aerodynamic, or even the
inertial, characteristics of an aircraft. Limitations to the
piloting in certain instances make the maneuvering capabilities of
the aircraft worse as well as not being unallowable in all cases.
The most promising means is the use of automatic equipment for im-
proving the dynamic characteristics of the aircraft.

Several variations of automatic systems which permit improving
the dynamics of an aircraft during spatial maneuvers have been
studied in the special literature [u48]1, [55], however this problem
can never be assumed as being sufficiently developed and we shall
not remain on it for any period of time. The material introduced
below is devoted only to one specific problem of automation.

We shall analyze the dynamics of the spatial motion of an air-
craft equipped with oscillation dampers relative to all three major
inertial axes.

And finally in the last section of this chapter we look briefly
at several requirements for the aerodynamic characteristics of air-
craft and discuss arguments as to the possible requirements on
limitation of the maneuvers.
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24. The Effect of Oscillation Dampers on the Dynamics of an
Aircraft During Rolling Maneuvers.

At the present time in the majority of modern maneuvering air- /20
craft automatic means are widely used to artificially stabilize and
raise the dynamic stability (oscillation dampers along the pitching
channels, the course channels, and the rolling channels. In con-
nection with this let us look briefly at the influence of such
damping devices on the dynamics of an aircraft during spatial
maneuvers with strong rolling.

External External
disturbances disturbances

Figure 6.1 shows the principal schematics of two of the most
widely used types of dampers. Figure 6.1,a shows the principal
block schematic of the simplest damper composed of a rate-of-turn
indicator (RTI), a signal amplifier indicator (A), and a control-
surface actuator (CSA). The damper operates in the following way.
With the appearance of an angular velocity of motion of an aircraft
there appears at the output of the rate-of-turn indicator a signal,
which is proportional to this velocity, and which is amplified and

reaches the control-surface actuator. Based on the signal from the
RTI, the CSA deflects the control to the side counter to the rate
of turn. The operation of the damper in simplified form, without

taking the real characteristics of the amplifier and the control-
surface actuator into account, can be approximately described by
the following equation :

§ = kyew (6.1)

From Formula (6.1) it follows that the use of oscillation
dampers is equivalent to the change in the derivative of damping of
the aircraft relative to the respective axis.

One basic disadvantage of a damper operating in accordance
with Equation (6.1) is that such a damper makes 1t more difficult
to establish steady banking at a constant angular velocity w = const.
In fact with the motion of an aircraft at a certain constant angle
of velocity (to be specific let us look, for example, at the pitching
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damper), the damper which operates according to Diagram a will
accomplish the deflection of the rudder and inhibit development of
the angular yawing velocity. If this signal of the angular veloc-
ity is first transmitted to a high frequency filter (see Fig. 6.1,b)
which admits the variable but does not admit the constant signal
then during a steady maneuver when the angular velocity of the air-
craft is constant the signal from the damper to the control-surface
actuator will be equal to zero and the rudder is not deflected.
Figure 6.1,b shows the block schematic of a damper which in addition
to the elements noted above, includes a high frequency filter (HFF)
that serves for diminishing the disturbances from the damper during
the steady rolls.

As a high frequency filter an electronic circuit is usually
used, the operation of which can be described by the following
transmission function:

X
out|_— _Tw
(—xT_ T (6.2)

where p is the Laplace operator {(operator of differentiation); T
and To are constants of the filter.

Operation of the damper with a high-frequency filter may be
described by the following transmission function:

P AW
8”k”(r2p+1>m (6.3)

The difference in operation of the dampers of the two described
diagrams in practice appears only in analyzing steady systems of
motion. In analyzing the dynamics of an aircraft on a steady roll
the effect of the damper of the first type is equivalent to the
change in the derivative of the damper of the aircraft relative to
the respective axis and the effect of the second type damper does
not influence the motion of the aircraft and is not taken into
account. With oscillational motion of an aircraft the effect of
both types of dampers is approximately identical and equivalent to
the change in the derivative of damping of the aircraft relative to
the respective axis.

The effect of the pitching and yawing dampers on the dynamics
of the aircraft during rolling maneuvers has three basic types of
manifestation:

(1) Effect on the value of the free term AO(B&), i.e., on the

degree of stability of motion of the aircraft and the size of the
critical angular rolling velocities;
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(2) Change in the static relationships and, respectively, the
reaction of the aircraft to deflection of the controls;

(3) The effect on the degree of damping of oscillations during
transient conditions.

The effect of the size of the derivatives of damping of the
aircraft on the size of the free term 4p(wy) of the characteristic
equation of motion of the aircraft at a constant angular rolling
velocity w, = const was studied in Section 8, where it was shown
that an increase in damping may lead to elimination of the zone of
unstable motion of the aircraft and consequently to the disappearance
of the critical rolling velocities. However, let us note that such /203
an effect on the functions Ao(wx) is exerted only by the damper
which operates according to the schematic shown on Figure 6.1,a.

The dampers which operate according to the schematic shown on Figure
6.1,b have practically no influence on the steady motion of an air-
craft and therefore exert no influence either on the value of Ag(w,)
or on the static solution. However, regardless of the fact that the
proper choice of parameters of the damper in certain instances may
succeed in eliminating the zone of unstable motion of an aircraft

at a constant angular rolling velocity the effect of the dampers

are far from being so simple and determinant. In a number of cases,
the inclusion of a damper exerts an unfavorable influence on the
dynamics of the spatial motion of an aircraft, in particular it will
lead to a growth in values of the G-forces acting on 1t. Let us
look separately at the influence of dampers of yawing and pitching
on the dynamics of an aircraft during rolling maneuvers.

A. Dynamics of an Aircraft with Yawing Damper

The influence of a yawing damper, operating according to the
plans shown on Figure 6.1,a, on the dynamics of an aircraft during
rolling maneuvers is expressed basically in that because of the
operation of the damper during maneuvers there occurs a decrease in
the size of the angular yawing velocity wy. In this case as 1is
easy to see from the equation of side slip, the decrease in w, when
w, = const leads to a growth in the angle of side slip of the air-

craft

g - LA :
e U 1) (6.4)

This result can be made more precise if we use the formula for
Agde from Table 2:

AP, :(_3} 7“:#_?[3_02 _;ﬁy]
Q Am, Ap 2 y (6.5)
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From Formula (6.5) it follows that the growth in the coefflclent
m@Y 1eads both to an increase in the denominator Ao/u and in the
nimerator of_ the expression. In this case the numerator with an
increase in m%Y growsg more rapidly as a result of which the change
in the coefficient m“J leads to an increase in the angle of side
slip of the aircraft’during the rolling maneuver. This result is
quite important since it follows from it that the flight of the air- /204
craft with the yawing damper turned on may lead to an increase in
the lateral G-forces during the rolling maneuver. These results
pertain also to the yawing damper operating according to this plan
in Figure 6.l1,a. However, the damper (see Fig. 6.1,b) increases

only the value of B ,, and does not influence the steady value of

BSS .
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Computations show that when wg ¥ wg the yawing damper exerts
a small influence on the transient conditions of an aircraft during
a rolling maneuver (Fig. 6.2).

B. Dynamics of an Aircraft with a Pitching Damper

The effect of the pitching damper, operating according to the
plan shown in Figure 6.1l,a and b, on the motion of an aircraft
during a rolling maneuver 1s on the whole analogous to the effect
of the yawing damper.

Turning on the pitching damper leads to an increase in the re-
action of the aircraft, for the angle of attack during a rolling
maneuver, to the deflection of the rudder. This result follows in
partlcular from the formula for the static derivative Amdr (see
Table 2):

2, (= e
As ={£§§=:F *(m% A—i)
e \amy ] 4 5+ 2 (6.6)

With a growth in the value Egi the numerator in Expression (6.6)
grows more rapidly than the denominator and the reaction of the
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aircraft, for the angle of attack a during the rolling maneuver, to
the deflection of the rudder is amplified.

The pitching damper, operating both according to the plan in
Figure 6.1,a and according to that in Figure 6.1,b, increases the
damping of the yawing oscillations of the aircraft (when wg <« Wy ).
Examples of the transient conditions are shown on Figure 6.3.

C. Effect of the Rolling Damper
The effects of the rolling damper leads both to a change in

the time of the transient conditions of the aircraft in rolling and
to a decrease in the value of the steady angular rolling velocity

/205

(if the damper operates according to the plan shown on Figure 6.1,a).
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Since the basic parameter in the analysis is the value of the angu-
lar rolling velocity, it is easy to see that turning the rolling

damper on will lead only to a change in the quantitative relation-
ships between the value of the aileron deflection and the reactions
to it of the aircraft. If we also take into account that the value

of the deflection of the ailerons from the rolling damper is usually

quite small (A§, = 2° - 3°), we may then assume that its influence
on the dynamics of the alrcraft during the rolling maneuver is ex-
pressed mainly in the slowing of the reaction of the aircraft to
the deflection of the ailerons which in certain instances may lower
the G-forces acting on the aircraft. However, in summing up it
follows to note that the use of dampers of rolling, yawing and
pitching will not solve the problem of decreasing the G-forces
during rolling maneuvers and does not exclude the possibility of it
entering into a system of inertial rotation.

25. Several Arguments for Choosing the Basic Parameters
of Modern Aircraft

In studying the spatial motion of modern aircraft with strong
rolling we must in first order find computations of the values of
the maximal G-forces and the angles of attack and side slip during
the maneuver and also analyze the possibility of loss by the air-
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craft of controllability from the ailerons (the possibility of a
system of inertial rotation). The degree of importance of each of
these two questions, characteristic for the spatial maneuvers, is
determined by the flight system of the aircraft.

Let us look briefly at the influence of the systems of flight
and several parameters of the aircraft and its dynamics during
spatial maneuvers. Let us determine the computational ranges of
flight from the point of view of the maximal, normal and lateral
G-forces which arise during the rolling maneuver carried out from
the conditions of horizontal flight. We shall look at rolling
maneuvers which are carried out at a constant value of the aileron
deflection (8, = comnst).

Using the relationships given in Table 2 let us write the
formulas for A%SS and 4Bss:
a0 ag

y 2
s v o= — =
ANSS=(-°LSS=—"r —prl AB—pAm? —m®y-
o ag / Ao x y y

3ss plo, /.. — -
Afgs S=<_-)= o (m; b'nyy’{' ("‘ABU)':: ?y_{'"

ag Ao

If as ag we examine the angle of attack of the aircraft under
the conditions of horizontal flight (ag = ahpf), then these relation-
ships determine the mean values of the G-forces acting on the air-
craft

If we ignore the influence of damping on the free term of the char-
acteristic equation A¢/u? we can simplify Formulas (6.7) and (6.8).
Let us look at Ao/u2 in the form

%:( — i Ap2) (= iy — Bpo?).

Making the obvious transformations, we find




8o 1 ] (6.11)

Qg ( ;a 2_ 1 !
wg

&S& =\ 2 myy' m;t .
Qo - 3 — —-
W

To find the value of E& corresponding to a given constant de-
flection of the ailerons in all systems of flight let us look at
the equations of moments relative to the axis 0X;y:

—3 ™ =5 1 /3.8 -
m;a&;:-—[nHX4—m§fr(—3700]wx, (6.13)

W\ Qg

whence it follows that

—o0

c Lo—mlayy

¢ = — .
_ —a 1 (3 (6.1h)
“x B — S| g
i M “’x(ao) 0

From Formula (6.14) it follows that the steady value of the angular /207
velocity wy is the greater as the angle of attack of the aircraft
(apg) is smaller under the conditions of horizontal flight.

Taking this result into account, from the analysis of Formula
(6.11) we find that the normal G-force acting on the aircraft is
the greater as the value of the c¢ritical rolling velocity is smaller
(that is, the greater the height
of flight) and the greater the

H P angular rolling velocity w, (the
M Tnertial smaller ag, i.e., the greater the
rotation system reference pressure).
20 L My possible
3 NG . -,
3 R dist Pops Since wy is a small value when
15 A Ij&ﬁﬁt crit M < 1 and grows substantially when
7] G-forces the number ¥ > 1, from Formula
" .. ARyt jnz (6.11) it follows that'maxi@al
0 1, xdist crit normal G-forces may exist with
gwdjst rolling maneuvers carried out at
N ; ! o subsonic flying speeds. The region
ST in which large normal G-forces are
G-forces possible is shown graphically on
Ty 4114 X
b TIzA 1R Figure 6.4.
0 05 w8 i
From Formula (6.12) it follows
Fig. 6.4 that large lateral G-forces during
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rolling maneuvers may be developed both in cases when the critical
velocity wy is the smaller and in the cases when the rolling veloc~-

ity wp is the smaller. The computational case however is that when
wg i1s the smaller critical rolling velocity, i.e., supersonic flying
speeds. Since at supersonic speeds the relationships wy > wg are

usually used, Formula (6.12) can then be simplified:

—my
Base - (6.15)
ag 2
SER
X
The formula for (Bgg/ag) has a form which is analogous to the
formula (agg/ag) studied above. The lateral G-forces are greater
the smaller the value of the critical velocity wpg and the larger
the value of wge. From Relationship (6.14%) it follows that wy grows
with an increase in the reference pressure (with a decrease in ag
= apf). The region in which the lateral G-force is the computed

one is shown on Figure 6.U4.

Finally let us evaluate the relative probabilities of the air- /208
craft entering into a system of inertial rotation. From the re-
sults given in the paper it follows that for modern aircraft of
usual design, entry into a system of inertial rotation is possible
at supersonic flying speeds (when wgp < wa) during rolling maneuvers
carried out from conditions of flight with negative angles of attack.

For an aircraft to enter into the system 1t is necessary that
the angular rolling velocity exceed the value of the first critical
rolling velocity and the function Amgp . (wy,) have a zero for the
angular rolling velocity greater than the second critical (maneuvers
of ¢ and E type, see Fig. 3.12). In such cases the greater the
value of the lateral stability mg, then the smaller are the deflec-
tions of the ailerons for possible entry of the aircraft into the
system of inertial rotation.

Evaluation of the required deflections of ailerons can be
carried out using the fcllowing formula:

miasl > mesk, (6.16)
or otherwise _ _
oy ek, (6.17)

where kK, is the empirical coefficient which takes the influence of
mpr into account and ag < 0.
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The greater the value of |E§| the smaller is the value of the
coefficient kg .

From Expression (6.17) it follows that since ®s “4/*4ﬁ@v, then
the probability of entry into a system of inertial rotation grows
with increase in the height of flight and with decrease in the ex-
cess directional stability. Increasing the excess lateral stability
leads to a decrease in Kz which simplifies entry of the aircraft
into large rolling velocities and increases the probability of its
entering into a system of inertial rotation.

On the basis of the above discussions we can make the following
conclusions:

1. Normal G-forces acting on an aircraft take maximal values
for rolling maneuvers at subsonic flying speeds and the greater the
value the smaller is the excess longitudinal stability of the air-
craft. In this respect it is necessary that the excess longitudinal
stability of the aircraft not be extraordinarily small.

2. Maximal lateral G-forces exist during rolling maneuvers
carried out at supersonic flying speeds and are the greater in
value as the excess directional stability of the aircraft is smaller.

3. The probability of the aircraft entering into a system of
inertial rotation grows with decrease in the directional stability

(mf) .

4. A large lateral stability makes it more difficult to pilot /209
the aircraft and increases the probability that it will enter into
a system of inertial rotation. Small values of the lateral stability
of the aircraft (mg) should then be guaranteed.

5. Carrying out rolling maneuvers with the dampers turned on
somewhat facilitates piloting the aircraft since it slows down and
"smooths'" out its reaction to deflection of the controls.

Since in many cases the requirements formulated above for the
aerodynamic parameters of stability of an aircraft cannot be satis-
fied completely, limitations are introduced for piloting the air-
craft which are usually reduced to the following:

1. In a rolling maneuver with positive initial G-forces, the
angles of bank cannot exceed 360°, With a large number of turns the
angular rolling velocity must be limited.

2. In rolliing maneuvers with initial G-force n, < 0.5 the maxi-
mal angle of bank must not exceed 180° and escape from roll should
begin at y =& 90°.

3. Any rolling maneuvers with negative initial G-force must
be carried out with great care and should be avoided.
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CHAPTER VII
MOTION OF SYMMETRIC ROTATING ROCKETS

The investigations carried out above and the qualitative re- /210

sults obtained confirm the great complexity of the problem of finding
solutions for the general case of motion of a solid, in this case

of an aircraft, under the influence of external moments linearly
depending on orientation and angular velocity of motiom. In respect
to this, great interest is given to the study of more simple cases
of motion of an aircraft when several additional limitations are
applied to its aerodynamic and inertial characteristics. Of practi-
cal interest is the case for which such investigations can be car-
ried out more completely, that is the problem of motion of symmetric
controlled rockets or missiles rotating relative to the longitudinal
axis. This chapter is devoted to a study of the questions of the
dynamics of symmetric rotating missiles during motion with small
angles of attack and side slip. 1In this case as symmetric missiles
we will understand those for which the following conditions are
satisfied:

1. An ellipsoid of inertia of a missile is a body of rotation
the maximal axis of which corresponds with the longitudinal axis
00X .

2. The missile has at least two orthogonal planes of aerodynamic
symmetry passing through the longitudinal axis.

3. Tor a missile the aerodynamic moments are lacking which
act relative to the longitudinal axis and depend on the angles of
attack and side slip (moments of lateral stability or moments of
"transverse air-cooling").

Possible designs of these missiles are shown on Figure 7.1.

It is obvious that all results obtained above for the general
case can be expanded also to the specific case of motion of a sym-
metric missile, however there are several characteristics of such
motion. In first order we must note that the motion of statically
stable missiles in a rolling rotation are aperiodically stable at
any values of the angular rolling velocities (this result in particu-
lar was found in Section 8.). However under certain conditions we
may observe resonance phenomena which are near in essence to
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aperiodic instability of an aircraft during critical angular rolling
velocities (see Section 8).
In general it follows to note /211
% that the angular velocities of =
rotation of missiles partially
// may be studied as constants
4 and usually are significantly
Z, greater than the angular veloc-
ities of rotation character-
istic of aircraft maneuvers.
Therefore investigation of the
motion of missiles rotating
at a constant angular velocity
Fig. 7.1 have greater practical interest
from the point of view of
direct application of the results obtained than to analogous in-
vestigations for aircraft.

-

26. Equations of Motion of a Symmetric Rotating Missile.
Analysis of Stability

The equations of motion given in Chapter I can be expanded
also to the motion of a symmetric missile, however in the latter
case they must be additionally simplified. We should look at the
motion of a missile under the same assumptions as the motion of an
aircraft, i.e., we shall assume that the missile flies at a constant
height, has a constant mass and the influence of gravity on its
motion relative to the center of mass can be ignored. 1In this case
the equations of motion of a missile written relative to the major
inertial axis, lying in its pitching planes, in dimensional form
(see Section 4) are of the type

* 1

— — c
@ —po,+ pla, = —L o
g
— — c .
¥ —p,— pan, = — 2 p; e

g

m;+ A[J‘(')xwy =rrl;a+m 2 :”—z +’}702;

|~

o — Buw o — 89 Ly 1 .
©, Bpo, v, = myd + m Yoy - moy;

O = mEe AT, (7.2)

These equations describe the motion of a missile as a function of /212
dimensionless time 1 associated with the real time of the equation
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' (7.3)
T=‘f—-dt,
Tm
0
where
m

T, = .
" esV(#)

Let us recall that in investigating the dynamics of missiles
and the expressions for the derivatives, as the characteristic
dimensions we usually take the area of the middle and the length of
the body of the missile.

Let us make the transformations of Equations (7.1) and (7.2)
to a form which is convenient for analysis. On the strength of the
aerodynamic and inertial symmetry of the missile we can introduce
the following definitions:

where

The terms mgg, my,, » and mgo, which enter into the right-hand side

of Equations (7.1% and (7.2) represent moments of small non-symmetry
which may arise either due to the aerodynamic non-symmetry (small
inequality of the angles of setting up the carrier surfaces, small
aercdynamic non-symmetry of shape, etc.) or with respect to the
action of constant disturbed moments of the thrust misalignment of
the engine on the active section, etc.

From Equations (7.1) and (7.2) it is obvious that the rolling
motion of a missile, i1f the influence of the moments of the trans-
verse air-cooling E@(a,s) can be ignored (for example, for missiles
near the axisymmetric), does not depend on the pitching and yawing
motion of the missile and when mgp, = 0 the angular rolling velocity
wp is constant in value. Hence in particular it follows that
Equations (7.1) may be studied separately from Equations (7.2) and

we assume that w, = const.

The symmetric form of the equations of motion (7.1) permit
simplifying their writing somewhat due to the transition to complex
variables, i.e., a complex angle of attack and angular velocity
using the relationship
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e=a+ib; } (7.14)

W= u)z+ Loy,

Making a simple transformation we find

. e
¢ —po—ipQo= ——T¢; (7.5)

o' — i ApRo=m o+ m,o 4 my,
where

L=uo;

my= Mo, + im,. (7.6)

The system of Equations (7.5) can be conveniently reduced to
a single equation which describes the change in the complex angle
of attack of the missile ¢. Let us make these transformations for
motion at a constant angular velocity wg,. From the first equation
of system (7.5) we find

o= (e
o=le (3w (7:8)

Substituting Expressions (7.7) and (7.8) into the second equation
of system (7.5) and grouping the terms for the respective deriva-
tives of the angle ¢, we find

?”—I—lc—;—m,,,—ipg(l —{—A)](p’ +[—pm,,-p2A92_
(7.9)

me‘P . C,
I 2 —tp.Q (A 7*”[0,)](?:”10!_],_

Equation (7.9) is a linear nonuniform equation with constant
complex coefficients. For its solution we must use the methods of
solving linear equations with real coefficients. The basic differ-
ence consists of the fact that the arbitrary constants in solving
the equation with complex coefficients are complex numbers and the
roots of the characteristic equation cannot be complex-conjugate as
is the case with the equation having real coefficients. Taking in-
to account the notations made, the solution to Equation (7.9) can
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be written in the form

o= Al Al 4y, (7.10)

where the coefficients A1, A2 and A3 are complex constants depending

on the initial conditions. The first two terms of Expression (7.10)
describe the general solution to the uniform Equation (7.9) and the /214
coefficient A3 is the specific solution to the nonuniform equation

A=

cw
— pm,— 2402 — ;?-—mQ(A7;—m%) (7.11)

The roots A3 and Ay are determined from the expression

‘e o ]
?——mw— 21+ A)

4=
2

i—"l—l/.[c_;—'”w*ipg(l—l—A)]g— (7.12)

14 . c,m, . c,
-_4{_pm?—p‘AQ'~’-— 5 -——lp-Q(A —2'—~mu,)}.

ho=

From Expression (7.12) it is obvious that since the coefficients
of control of motion (7.9) are complex, then the roots A} 5, cannot
be complex-conjugates and in the general case are different complex
roots and the solution (7.10) consists of oscillations of two
different frequencies. Taking into account that the square root
in Expression (7.12) represents a complex number the expression for
the roots of the characteristic equation can be rewritten in the
form

)\1'2= —_ (Reli R%)—!—i([ml t Im-z), ( 713 )

where (-Rej, Im;) and (-Rey, Ims) are real and imaginary parts,
respectively, of the first and second terms in Relationship (7.12).

For stability of motion we must satisfy the conditions

Re, >0; (7.14)

Re, > [Res|. (7.15)
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Let us look at an analysis of these inequalities. Taking into
account that

Co 1
e =——mn}—,
Re, (2 ) 2

we find that Condition (7.14) is always satisfied, therefore we

must analyze only Conditions (7.15). Taking into account that the
damping i1s small, on the basis of Relationship (7.15), we introduce

the approximate condition of stability. In the subroot expression

of Formula (7.12) in the case of small damping the coefficient in

the imaginary part is substantially less in value than in the real

part, therefore in extracting the root we can retain only the first

two terms of its expansion into a Taylor series. Carrying out this /215
operation we find an approximate expression for the roots A1 and Ar.

2
)lf):—-—————‘~—r - +

c ¢
[—*’—mm—tug(wm ] yg(l—A)(—“’+mw)
1) 2 n
2 — 2 V —Zum, + 1292 (1 — A)? (7.16)

+ iV —dpm, 4 p222 (1 — AR

Using Expression (7.16) the condition of stability (7.15) can be
written in the form

_ c, 2
(Ix)2 ? +m,,

4& 2 (7.17)
(5-)

m, 1 72>
_;&_2+T( P>

Inequality (7.17) has been obtained on the assumption that
the expression under the radical in Formula (7.16) is positive.
In other words we additionally assume that the following inequality
is satisfied

02(7,)2
me < 2 (4) : (7.18)

Inequality (7.18) is an approximate condition of the aperiodic
stability of motion of a missile. From comparison of conditions
(7.17) and (7.18) it is clear that the condition of stability (7.17)
is stronger and 1its satisfaction certainly involves

198



satisfying Conditions (7.18). In fact, Condition (7.17) can be
rewritten in the following form:

AT.)2 (7.19)

m?< y‘QiIX) K’

where
¢ 2
5
K=1—

‘e
Er_mm (7.20)

The value of X, as follows from Expression (7.20), lies in the
range between zero and unity:

0<K <. (7.21)
When X = 1 we find the approximate conditions of the aperiodic
stability (7.18); on the other hand if X = 0 then only the statically
stable missile may be the dynamically stable one. In practice the

value of K is neither zero nor one, but occupies certain mean
values.

In estimating the aperiodic stability of uncontrolled rotating /216
missiles we usually use Conditions (7.18) with the help of which we
can select the required value of the angular velocity of rotation
of the missile which will guarantee stability. If in this case
Condition (7.17) is not satisfied then the missile is found to be
oscillationally unstable, however these oscillations diverge slowly
since the values c4 and m, are usually small.

27. Dynamics of a Symmetric Rotating Missile. Resonance.

In Section 26 we determined the basic conditions of stability

o
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of motion of a missile and found the general solution for the comple
angle of attack ¢(1). As follows from the writing of the solution
itself, ¢(1) may be studied as the sum of three vectors on the

plane a, ZB: +two vectors describe the oscillational motion of a
missile and the third vector describes the shift of the zero deflec-
tion caused by the constant external moment of nonsymmetry. Example

of motion of a missile on the plane o, 2B are shown on Figures 7.2
and 7.3 (let us recall that the complex angle ¢(T1) is determined in
body axes of the missile). On Figure 7.2 the motions of a non-
rotating missile is plotted. In this case in the solution there is
a vector of constant shift 43 caused by the effect of aerodynamic
nonsymmetry and the vector 4; corresponding to the oscillational
moment of the missile. Change in the angle of attack and side slip
of the missile occurs at an identical frequency and therefore in
the case of zero damping is represented in the form of an ellipse.
An example of the motion of a rotating missile is shown on Figure

7.3. In this_case the motion is_described by three vectors, the
fixed vector A3 and two vectors A; and Ay which correspond to the
motion with two frequencies of oscillation of the missile. Vector

A3y describes the high-frequency, and vector A; the low-frequency,
components of the solution.

The dynamics of a missile can be studied more conveniently and
clearly if we take as the system of coordinate axes the axes
OX#*#Y*Z%, which oscillate along with the missile according to a and
B but do not rotate. The relationship between the systems of co-
ordinate axes is clear from Figure 7.4. The nonrotating system of
coordinates OX*Y#*Z%* is convenient in that it permits tracing the
trajectory of motion of the nose of the missile around the velocity
vector and in the same way allows the picture of its motion to be
represented more clearly.

To derive equations of mo-
tion of a missile in the axes
OX#%#Y*7Z% we can use Equation (7.9)
and convert

F=ee T, (7.22)

ment with the rotating system of
coordinates, and the angle ¢ into
a non-rotating system. Substi-
tuting into Equation (7.9) re-
lationship (7.22) we find the

equation for Iy

i c?__ — 7 o
p .{.[7 M thlx]?-i— (7.23)
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—{-[—ﬁm?—p"’g?l—;—ipg (A _c;_ — My — 1)15=
(7.23)
=mgpe— %,

The solution for ¢ can be more simply obtained by substituting the
variable (7.22) in solution (7.10) for the angle ¢:

- (Rg— i (Ra—iSp) < — it
e=A M T L AT T L AT (7.91)

If we introduce new definitions for the roots of the characteristic /218
equations we find

g= A€+ Age™ - Ageite,
(7.25)

where

? 2[/_""_‘*’+ Te\* (7.26)
- 2 2

~ i e/ (- Tt (5)). 727

From Expressions (7.26) and (7.27) it is clear that for a
statically unstable missile (my > 0) the imaginary parts of the
roots A; and Ay have identical signs, i.e., the respective vectors
on the complex plane a, 2B rotate to one side with an increase in
7. In this case the motion on the plane (o, ZB) for a symmetric
missile when A3 = 0 has the form shown on Figure 7.5. If the missile
is statically stable (my < 0) then the imaginary parts of the roots /219
Al and A have different signs and the respective vectors on the
complex plane (a, ZB) rotate to the opposite sides. As a result
the motion for a symmetric missile has the form shown on Figure 7.6.
From Expressions (7.26) and (7.27) we can find the character of the
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dependence of the roots on the value of the angular rolling veloc-

ity both for the stable and the statically unstable missile. The
character, more precisely the tendency,
in increasing the angular rolling velocity is illustrated on Tables

7 and 8.

RiY

of the change of the roots

Fig. 7.5 Fig. 7.6
TABLE 7. STATICALLY STABLE MISSILE
Roots
[ReX; | Hm %y | |Re, | [Im%, |
Parameters of
the missile™ )
c
?;5——mm Grows Grows Drops | Grows
il <—m Drops Grows Grows | Grows
2 w
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TABLE 8. STATICALLY UNSTABLE MISSILE

Roots ' _
Parameters o |ReRy | | tmXy | [ReX, | [1m7, |
the missile ™S

First
‘e grows,

PR Drops then Grows Grows
drops
|Grows,

:E'<——mo Grows then Drops Grows

2 drops

From Tables 7 and 8 it is clear that the rules in the changes /220

of roots as a function of the angular rolling velocity £ substan-
tially depend on the sign of the coefficlient of the static stability
of the missile., 1In particular the direction of the change of the
real parts of the roots and consequently the degree of damping of
the motion have a directly opposite character for the statically
stable and unstable missile. Let us proceed to a more detailed
analysis of the specific solution to a nonuniform equation obtained
due to the presence of a constant disturbing moment of aerodynamic
nonsymmetry of the aircraft. The expression for A3, as was found
earlier, has the form

c,m c
_<m¢+ ¢“’)_FAJ_JQ<A7§—W%) (7.28)

The absoclute value of A3 characterizes the amplitude of the missile
from the zero position caused by the constant disturbing moment.
The absolute value of A3 assumes a maximal value when the absolute
value of the denominator is minimal. The square of the absolute
value of the complex function standing in the numerator of (7.28)
is determined from the formula

¢ m
2

L

cb(gz):(ms,jL o pAQQ)z_’_Q?(AC_;_._me (7.29)

/

It is easy to prove that the function $(Q2) agrees with the
free term of the characteristic equation Ay obtained in Section 8
in which the parameters of the symmetric missile are given. Ex-
pression (7.28) represents simply the static solution written for
the complex angle of attack from the external disturbing moment
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analogous to the relationships given for the general case of a
nonsymmetric aircraft in Table 2.

From Expression (7.29), by equating the derivative 806/3Q2 to
zero, it is easy to find an expression for the angular rolling
velocity 9 for which ©(Q2) has a minimal value. Designating this
expression by Q we obtain

crit?
C
A _m )
-0 = _”_li__(__Q_L (7.30)
crit pA 2u2A?
For this value of the angular rolling velocity (2 = Q.n;¢), the

absolute value of A3 assumes a maximal value equal to

max |Agl=—— Imol = L .
a2
. —— —m
a5 m, 2 @ (7.31)
2 ® pA Qu2A2
Thus, from the analysis given it follows that with a certain /221

value of the angular rolling velocity

equal to Qgp3;t the specific solution to
ip the nonuniform equation grows substantially.
In particular, with the disappearance of
small damping, it tends to infinitely large
value. The physical sense of the result
obtained becomes more clear if we return
to Equation (7.23). The specific solution
to Equation (7.23) is found as a result of
the effect on the missile of the periodic
disturbance of the angular velocity uf.
When the periodic disturbance acts at a
frequency equal to the natural frequency
of the oscillations of the system the
.7 phenomenon of resonance begins. Direct

proof is easy to find that the angular

velocity §, corresponding to the resonance, is determined using
Formula (7.30). Thus for symmetric missiles the existence of a
small nonsymmetry leads to the appearance of a new effect in their
dynamics, that is, to a resonance growth in the angles of attack
and side slip. In connection with this the stable missile in the
presence of small nonsymmetry and with motion at an angular rolling
velocity equal to the critical may be found to be practically un-
stable (Fig. 7.7). Direct comparison of Expressions (7.29) and
(2.4) indicates a strong relationship between the resonance phenomena
characteristic for the symmetric missiles and the more complex

N

o

~J

Fig.
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of the dynamics of nonsymmetric aircraft.

For small values of damping, Formula (7.30) can be simplified

. == — (7.32)

It should be noted that the resonance caused by the rolling
rotation and the lateral oscillation, as follows from Expression
(7.30), is possible only for statically stable missiles and impos-
sible for statically unstable missiles. In all cases of motion of
a statically unstable missile, for example an artillary shell, the
rolling rotation stabilizes its motion [61b].
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